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Conceptualization of a Software Institute for High Energy Physics

• High-energy Physics: Software & 
Computing enables our science

• Big challenges ahead for the High-
Luminosity (HL-)LHC era
• x10 projected shortfall of CPU & storage 

<μ>=200

• Advances in hardware will not get us 
there à need advances in Software!

• Community process à Strategic Plan 
for a HEP Software Institute

M. Neubauer
Supported by ACI-1558233

P. Elmer, M. Sokoloff
ACI-1558216, ACI-1558219



Automated synchronization and boundary 
condition application for the Cactus framework

Samuel Cupp, Steven Brandt, Peter Diener
Louisiana State University

z Cactus Framework is an open-source environment for numerically solving 
Cauchy problems in parallel

z Current ghost zone synchronization and boundary condition application 
requires non-trivial, manual scheduling by programmers

z PreSync project replaces old system with an automated scheme
z Tracks region of validity for grid functions (interior or everywhere)
z Schedules synchronization and boundary conditions as needed

z PreSync reduces burden on users and programmers to understand inner 
workings of the Cactus Framework

We are supported by NSF Grant #1550551.



SI2-SSI:
Integrating Data with Complex Predictive Models under Uncertainty:
An Extensible Software Framework for Large-Scale Bayesian Inversion
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SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty:
An Extensible Software Framework for Large-Scale Bayesian Inversion

Omar Ghattas�, Youssef Marzouk�, Matthew Parno�, Noemi Petra†, Umberto Villa�

�Institute for Computational Engineering and Sciences, The University of Texas at Austin
�Center for Computational Engineering, Massachusetts Institute of Technology

†School of Natural Sciences, University of California, Merced

Introduction
Needs and motivation
� Inverse problems are a natural way of extracting knowledge from data via models, and

is a critical precursor to prediction.
� Bayesian inference provides a comprehensive and systematic framework for formulating

and solving inverse problems under uncertainty.
� Bayesian inversion with conventional algorithms and software is prohibitive for complex

models and high dimensional parameter spaces.
� Intensive research efforts are creating advanced algorithms that exploit posterior struc-

ture to efficiently tackle previously intractable problems.
� Despite their incredible potential, these new algorithms have not been made accessible

to a broad community of scientists and engineers interested in solving inverse problems.

Intellectual merits
� Develop, deploy, and support robust, scalable, high-performance, open-source software
� Provide reference implementations of advanced Bayesian inversion algorithms
� Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts
� Facilitate the wider adoption of Bayesian tools in simulation-driven science
� Reduce software barriers so that any scientist or engineering can efficiently integrate

data with models to quantify and reduce uncertainties

Bayesian Formulation of Inverse Problems
� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, con-

struct a probabilistic description of the model parameters that accounts for both the
observations and prior information.

� Solving the inverse problem amounts to characterizing the posterior distribution: draw-
ing samples; estimating the mean, covariance, or higher moments; evaluating the pos-
terior probabilities of particular events or quantities of interest
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Figure: The process of extracting knowledge from data by solving inverse problems

Software Framework
MUQ and hIPPYlib
MUQ and hIPPYlib have complementary capabilities that
together provide a unique software framework for large-
scale Bayesian inversion.

MUQ (MIT Uncertainty Quantification library) provides tools
for:
� Enables exact posterior sampling, via structure-exploiting

Markov chain Monte Carlo (MCMC) algorithms
� Facilitates variational approaches to Bayesian inference,

i.e., transport maps
� Can approximate computationally intensive models
� Contains tools for complex Gaussian random fields
� Supports specifiying complex models in a modular fashion
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hIPPYlib (Inverse Problems Python library)
� Implements state-of-the-art scalable algorithms to solve PDE-based deterministic and

linearized Bayesian inverse problems
� Supports linear and nonlinear, stationary, and time-dependent PDEs
� Expresses the forward PDE and likelihood in weak form using the friendly, compact,

near-mathematical notation of FEniCS
� Employs FEniCS symbolic differentiation capabilities to construct high-order derivatives

of parameter-to-observable maps, thereby exploiting geometry of the posterior

MUQ-hIPPYlib integration
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Figure: Illustration of the MUQ and hIPPYlib components and their integration

Code design and philosophy
� Goal: Make the software efficient and scalable as well as easy to use at all user levels
� Software abstractions follow mathematical abstraction
� Highly adaptable modeling framework that encourages code reuse, facilitates construc-

tion of complex or hierarchical models, allows for algorithmic innovation
� Modular structure that allows for seamless experimentation with different models and

testing of a variety of structure exploiting algorithms
� Three distinct user interfaces make software accessible to users with different mathe-

matical backgrounds and programming experience

Education and Outreach
Teaching and research
� Early community adoption by researchers at Heidelberg, Bath, and Exeter.
� Graduate-level courses on inverse problems and uncertainty quantification at MIT, NC

State, NYU, UC Merced, and UT Austin use hIPPYlib and/or MUQ as a teaching tool
� A dozen graduate students and five postdocs at MIT, UC Merced, and UT Austin are

using MUQ and/or hIPPYlib for their research and dissertations
� Several other projects are using MUQ-hIPPYlib:

� Characterization of boundary loads on lock gates from strain observations (ERDC)
� Inversion for coupled flow–geomechanics to understand induced seismicity (MIT)
� Inversion and prediction of ice sheet dynamics using parallel MCMC (MIT)
� Optimal sequential experimental design for mobile sensor platforms (MIT)
� Inference, prediction and optimization under uncertainty for turbulent combustion (UT)
� Inversion and control for CO2 sequestration with poroelastic models (UT)
� Inversion for material properties of cardiac tissue (UT)
� Inference of constitutive laws in mechanics of nano-scale filaments (UC Merced)
� Inference of basal boundary conditions for ice sheet flow (UC Merced)

� Adoption of MUQ-hIPPYlib by the Army Corps of Engineers; deployment of MUQ at
Sandia National Laboratories; community engagement with new academic users.

Papers, proceedings, and conference presentations
� MUQ and hIPPYlib development has supported 7 published peer-reviewed articles and

another 6 manuscripts currently submitted
� Over 20 conference or invited seminar presentations since January 2016 on research

results obtained via MUQ and/or hIPPYlib

Pedagogic presentations, short courses, & summer schools
� Inverse Problems: Systematic Integration of Data with Models under Uncertainty, Grant

awarded for the 2018 Gene Golub SIAM Summer School
� hIPPYlib: An Extensible Software Framework for Large-Scale Deterministic and Lin-

earized Bayesian Inverse Problems, SAMSI Summer School, SAMSI, Research Trian-
gle Park, NC, 8–12 August, 2016

� QUEST Uncertainty Quantification Summer School, USC, 19–21 August, 2015
� Inverse Problems and Uncertainty Quantification, ICERM IdeaLab, Brown University,

6–10 July, 2015
� Introduction to Uncertainty Quantification, IMA Short Course, University of Minnesota,

15–26 June, 2015

Figure: Left to right: MUQ at ICERM, ICERM IdeaLab attendees, IMA Short Course

Code repositories
� http://muq.mit.edu � http://hippylib.github.io

Acknowledgement
This work was partially supported by National Science Foundation grants ACI-1550487,
ACI-1550547, and ACI-1550593.

NSF SI2 PI Meeting, Arlington, VA, 2017
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is a critical precursor to prediction.
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models and high dimensional parameter spaces.
� Intensive research efforts are creating advanced algorithms that exploit posterior struc-
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� Despite their incredible potential, these new algorithms have not been made accessible
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Intellectual merits
� Develop, deploy, and support robust, scalable, high-performance, open-source software
� Provide reference implementations of advanced Bayesian inversion algorithms
� Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts
� Facilitate the wider adoption of Bayesian tools in simulation-driven science
� Reduce software barriers so that any scientist or engineering can efficiently integrate

data with models to quantify and reduce uncertainties

Bayesian Formulation of Inverse Problems
� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, con-

struct a probabilistic description of the model parameters that accounts for both the
observations and prior information.
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Figure: The process of extracting knowledge from data by solving inverse problems

Software Framework
MUQ and hIPPYlib
MUQ and hIPPYlib have complementary capabilities that
together provide a unique software framework for large-
scale Bayesian inversion.

MUQ (MIT Uncertainty Quantification library) provides tools
for:
� Enables exact posterior sampling, via structure-exploiting

Markov chain Monte Carlo (MCMC) algorithms
� Facilitates variational approaches to Bayesian inference,

i.e., transport maps
� Can approximate computationally intensive models
� Contains tools for complex Gaussian random fields
� Supports specifiying complex models in a modular fashion
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hIPPYlib (Inverse Problems Python library)
� Implements state-of-the-art scalable algorithms to solve PDE-based deterministic and

linearized Bayesian inverse problems
� Supports linear and nonlinear, stationary, and time-dependent PDEs
� Expresses the forward PDE and likelihood in weak form using the friendly, compact,

near-mathematical notation of FEniCS
� Employs FEniCS symbolic differentiation capabilities to construct high-order derivatives

of parameter-to-observable maps, thereby exploiting geometry of the posterior
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Figure: Illustration of the MUQ and hIPPYlib components and their integration

Code design and philosophy
� Goal: Make the software efficient and scalable as well as easy to use at all user levels
� Software abstractions follow mathematical abstraction
� Highly adaptable modeling framework that encourages code reuse, facilitates construc-

tion of complex or hierarchical models, allows for algorithmic innovation
� Modular structure that allows for seamless experimentation with different models and

testing of a variety of structure exploiting algorithms
� Three distinct user interfaces make software accessible to users with different mathe-

matical backgrounds and programming experience

Education and Outreach
Teaching and research
� Early community adoption by researchers at Heidelberg, Bath, and Exeter.
� Graduate-level courses on inverse problems and uncertainty quantification at MIT, NC
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� Inversion and control for CO2 sequestration with poroelastic models (UT)
� Inversion for material properties of cardiac tissue (UT)
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� Inference of basal boundary conditions for ice sheet flow (UC Merced)

� Adoption of MUQ-hIPPYlib by the Army Corps of Engineers; deployment of MUQ at
Sandia National Laboratories; community engagement with new academic users.

Papers, proceedings, and conference presentations
� MUQ and hIPPYlib development has supported 7 published peer-reviewed articles and

another 6 manuscripts currently submitted
� Over 20 conference or invited seminar presentations since January 2016 on research

results obtained via MUQ and/or hIPPYlib
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Code repositories
� http://muq.mit.edu � http://hippylib.github.io
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Software framework (Python/c++) for large-scale Bayesian inference

Easy to use for both users and algorithm developers

Combined capabilities of MUQ and hIPPylib
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SI2-SSE: Improving Scikit-learn 
usability and automation

> 150 models 20.000 datasets
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learning

Andreas C. Müller, Columbia Data Science Institute
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Symbolic Toolboxes for Differential Geometry 
and Mathematical Physics

• Symbolic computation – computer algebra 

• Expert Systems:  toolboxes and libraries for domain scientists and educators 

• Multiple domains: Differential geometry, Lie theory, general relativity and field 
theory, geometry of differential equations 

• Vertically integrated, interdisciplinary curriculum development

Project Highlights



SI2-SSE: Development of a Software Framework for Formalizing 
ForceField Atom-Typing for Molecular Simulation
Christopher R. Iacovella1, Peter Volgyesi2 and Janos Sallai2  
1 Department of Chemical and Bimolecular Engineering, Vanderbilt University,   
2 Institute for Software Integrated Systems, Vanderbilt University

• Defining parameter usage via SMARTS and overrides

- Encode chemical context using the SMARTS language for defining molecular patterns 

opls_135 = [C;X4](C)(H)(H)H 
- Set rule precedence via “overrides” 

opls_148 = [C;X4]([C;X3])(H)(H)H overrides=opls_135

- Rules are both human and machine readable and can be tested for accuracy and completeness

• Challenge: Develop a general scheme to encode and apply forcefield parameter rules

- Forcefields describe the way atoms and collections of atoms interact via a set of adjustable parameters 

- Can contain thousands of sets that are differentiated by the chemical context of an atom, e.g,: 
- number of bonds, identity of bonded neighbors, local-environment of bonded neighbors, etc. 

- Rules for usage are typically hard-coded into software as a deeply nested hierarchy with specific rule order 
- This approach can be difficult to debug, extend, and disseminate

• Foyer: General Python library for applying forcefields

- Atom types assigned using matching patterns  

determined by performing a subgraph  
isomorphism on the system graph 

- Rules can be evaluated in any order  
- Uses a fixed point iterative scheme that creates  

white- and blacklists, rather than rigid hierarchy 
- Source code does not change when rules change 

- Allows for easier testing, validation, versioning and dissemination 



SI2-SSI: Integrated Molecular Design Environment for 
Lubrication Systems (iMoDELS)
Peter Cummings1, Clare McCabe1, Ákos Lédeczi1, Gabor Karsai1, Adri van Duin2, Paul Kent3 
1 Vanderbilt University, 2 Pennsylvania State University, and  3 Oak Ridge National Laboratory

mb.Polymer

mb.Monolayer

mb.TiledCompound
-CH2

Alkane

Duplicated 
silica

Alkane-functionalized silica Crystalline 
silica

• mBuild: a Hierarchical, Component 
Based Molecule Builder written in 
Python


- Construct complex systems from smaller, 
interchangeable pieces 

- Enable programmatic variation of chemistry, 
required for screening

• metaMDS: define parameter landscape for screening
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programmatically  
vary chemistry

identify relationships between  
chemistry and tribology

• Challenge: Improved lubrication strategies required for devices with nanoscale separations

- Molecular simulation can be used to understand lubrication at the molecular level  

- Use this to screen for relationships between chemistry and tribology (i.e., lubrication properties)



Advancing Analysis for HEP

ROOT

Spark-
ROOT

Spark

uproot

OAMap

Python

Anaconda High Level Tools 
We are therefore striving to 
present HEP analysis with 
higher-level interfaces. 
Scikit-HEP incorporates 
HEP techniques in Pythonic 
idioms, uproot provides 
access to ROOT data as 
Numpy and Pandas 
abstractions, and OAMap 
compiles object-centric 
user code into fast array 
operations. 

Bridging to Big Data  
“Big Data” software in industry, such 
as the Spark and scientific Python 
ecosystems, both complement and 
reproduce functionality of HEP 
software developed. To provide 
more options and reduce 
maintenance burdens, DIANA is 
building bridges between HEP 
software and the Big Data 
ecosystems: Spark-ROOT to Spark 
and uproot/OAMap to Numpy, 
Numba, and Dask. 

Improved Performance  
To reduce the time to scientific discovery and to enable more in-depth 
analyses, we are increasing the rate of access to ROOT data files. This 
includes streamlined access to simpler data types (uproot and BulkIO) 
and faster compression algorithms (LZ4 and ZSTD). These efforts have 
already provided factors-of-several improvements. 

Statistical 
Techniques  

We are developing tools 
and methods for statistical 
analysis in HEP, including 
research for simulator-
based inference (Carl), 
machine learning for 
particle physics (Scikit-
Optimize), and software for 
efficient numerical 
computations.
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A Landlab-built cellular automaton model of hillslope evolution
Gregory E. Tucker1,2, Scott W. McCoy3, Daniel E.J. Hobley4

1 - CIRES and Department of Geological Sciences, University of Colorado, Boulder
2 - Community Surface Dynamics Modeling System (CSDMS)

3 - Department of Geological Sciences and Engineering, University of Nevada, Reno
  4 - School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
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Abstract: This poster describes and explores a new
continuous-time stochastic cellular automaton
model of hillslope evolution. The software was
written using Landlab, a Python package for rapidly
creating and modifying 2D numerical models of
various sorts. The Grain Hill model provides a
computational framework with which to study
slope forms that arise from stochastic disturbance
and rock weathering events. The model can
reproduce a range of common slope forms, from
fully soil mantled to rocky or partially mantled, and
from convex-upward to planar shapes. With the
addition of a rule for large blocks, the model
captures the morphology of hogbacks, scarps, and
similar features. Model parameters have a direct
link with corresponding parameters in continuum
theory, and can reproduce observed slope forms at
the correct scale.

Landlab is a Python package that supports
building and exploring 2D grid-based
computational models. Key capabilities
include:

• Set up a structured or unstructured grid
with just a few lines of code

• Use, create, and/or combine standardized
components that encapsulate numerical
simulations of individual processes

For more about Landlab see:

http://landlab.github.io

We seek to explain the form and evolution 
of rocky hillslopes like these:

Common slope forms include parabolic, 
planar, and cliff-rampart:

We start with a lattice-grain cellular model
(Tucker et al., 2016):

Transition rules are used to represent
gravity ...

... and frictional collisions:

Example of granular dynamics simulation:
emptying of a silo

For the Grain Hill mode, we add rules
for periodic soil disturbance and
soil formation by weathering

When the hill is 100% soil, the height
and form depend on the ratio of 
disturbance frequency to uplift rate

We can interrogate the scaling of height
and effective diffusivity

When rock is present, behavior ranges
from transport- to weathering-limited

Transport- vs. weathering-limited behavior
is reflected in scaling of gradient and 
fraction soil (regolith) cover

Model captures influence of fractional soil 
cover on average weathering rate ...

... but diverges
from standard
assumption
rate ~ exp( -r )

What about cliff-rampart morphology? With "collapse rule": quasi-steady forms ...

 ... and transient relaxation:

Adding a rule for "blocks" allows us
to capture mesas, hogbacks, and
rocky ridges

With the right parameter mapping, model 
captures specific case studies, such as
the convex-up slope in panel 3a ...

 ... and the planar profile in panel 3b:
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Solving Polynomial Systems with PHCpack and phcpy

PHCpack is software for Polynomial Homotopy Continuation

phcpy is a new Python package, available at www.phcpack.org

use case from the phcpy tutorial:

reproduces J. Mech. Design paper

Jan Verschelde (UIC) NSF ACI 1440534 SI2 PI meeting 2018 1 / 1



CRESCAT
A Computational Research Environment for Scientific Collaboration on Ancient Topics

PI: David Schloen, University of Chicago

Goals 1. Acquisition 2. Integration 3. Analysis

4. Publication 5. Archiving

• Support all 5 stages of 
data for multi-disciplinary 
collaborative research

• Automate data transfers 
and transformations from 
one stage to the next via 
high-level GUI

• Accommodate hetero-
geneity of data sources, 
types, and schemas while 
preserving the original 
ontologies

• Seamless scalability for 
data management and 
algorithmic analyses 

• Ensure sustainability of 
software maintenance and 
technical support

• Test and document with 
complex use cases from

• External curated data 
repositories via live links 
using their Web APIs

• Instruments and data 
files with support for 
many data types and file 
formats (2D images, 3D 
models, audio, video, 
geospatial, etc.)

• Manual entry with offline 
mode for field input and 
automated syncing of 
data when back online

• Ontology-agnostic data 
warehouse stores both 
data and the ontologies 
inherent in the data

• XQuery DBMS optimized 
for hierarchies of atomic 
keyed data objects 
representing spatial, 
temporal, linguistic, and 
taxonomic relationships

• Automatic parsing of 
source data to populate 
the integrated warehouse

• Complex queries use 
hierarchical taxonomies 
with semantic inheritance

• Statistical analysis and 
visualization via tightly 
integrated R server with 
data-aware console

• Geospatial mapping and 
analysis via ArcGIS Online 
and ESRI components

Ancient Greek economy 
via network analysis of 
thousands of coin hoards

• REST API exposes 
published data as XML 
with XSLT stylesheets to 
render it as JSON/HTML

• Sample Web apps
provided for various 
research domains, to be 
customized as needed

• Secure, password-
protected data controlled 
and published by owners

• OWL-RDF ontology 
specification documents 
the top-level (upper) 
ontology underlying the 
data warehouse

• Can export RDF triples 
conformant to the OWL 
ontology, preserving all 
distinctions and relation-
ships in the data, for use 
in other graph databases

❖ Archaeology
❖ Paleontology
❖ Historical linguistics
❖ Ancient economics
❖ Population genetics
❖ Paleocliimatology

etc. Funded by NSF SI2-SSI award 1450455

Example Use Case





SI2-SSE:	Scaling	Up	Science	with	the	
Cooperative	Computing	Tools	

Douglas	Thain,	University	of	Notre	Dame	

 { "command"  :  "mysim.exe –p " + x*2 + 
                       " input.txt > output." + x + " .txt", 
   "outputs" :  [ "output" + x + ".txt" ], 
   "inputs"  :  [ "input.dat", "mysim.exe" ] 
} for x in [ range(1,100) ]   

{ "command"  : 
   "mysim.exe –p " + x*2 + 
   " input.txt > output." + x + " .txt", 
   "outputs" :  [ "output" + x + ".txt" ], 
   "inputs"  :  [ 
        "input.dat", 
        "mysim.exe" 
   ] 
} [ for x in range(1,100) ]   

Portable Workflow 
Expression 

Experiment 
Management 

Scalability 
and Robustness 
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C++	Compiler

Eigen Rmath CppAD

igraph

NIMBLE	C++	library

NIMBLE	(Models)

NIMBLE	Compiler	/	R

NIMBLE	(Algorithm	Library) NIMBLE	(User	Algorithms)

R	packages

Generated	C++

R

C++

Perry de Valpine (PI); UC Berkeley
Christopher Paciorek (co-PI); UC Berkeley
Daniel Turek; Williams College
Nicholas Michaud; UC Berkeley
Duncan Temple Lang; UC Davis

NIMBLE:	Programmable	Statistical	Modeling	for	Hierarchical/	Graphical	Models	

1.	More	and	better	MCMC
• Many	different	samplers
• Better	adaptive	algorithms
2.	Numerical	integration
• Laplace	approximation
• Adaptive	Gaussian	quadrature
• Hidden	Markov	models

3.	Maximum	likelihood	estimation
• Monte	Carlo	EM
• Data	cloning
• Monte	Carlo	Newton-Raphson

4.	Sequential	Monte	Carlo
• Auxiliary	Particle	Filter
• Ensemble	Kalman Filter	
• Iterated	Particle	Filter

5.	Normalizing	constants
• Importance	sampling
• Bridge	sampling
• Others

6.	Model	assessment
• Bootstrapping
• Calibrated	posterior	predictive	

checks	
• Cross-validation
• Posterior	re-weighting

7.	Idea	cominbations
• PF	+	MCMC
• MCMC	+	Laplace/quadrature

https://r-nimble.org
NSF ACI-1550488, DBI-1147230 (completed), DMS-1622444

1. Domain-specific	language	(DSL)	for	statistical	models
• We	adopt	and	extend	the	widely-used	BUGS	language

2. Domain-specific	language	embedded	within	R	for	model-generic	
algorithms

3. Code-generator	(compiler)	that	generates	C++	from	the	model	and	
algorithms	DSLs.
• C++	objects	are	managed	from	R	by	dynamically-generated	

interface	classes
4. Algorithm	library	(MCMC,	SMC,	etc.)

Core	Team

NIMBLE	ComponentsWhat	do	we	want	to	do	with	hierarchical	models?	



SI2-SSE: High Performance Low Rank Approximation for Scalable Data Analytics
R. Kannan (ORNL), G. Ballard (WFU), B. Drake (GTRI), and H. Park (GAtech) https://github.com/ramkikannan/nmflibrary

Constrained Low Rank Approximation (CLRA) for 

Modeling Key Data Analytics problems  of clustering, 

topic modeling, community detection, and hybrid 

clustering

Our current focus: Nonnegative Matrix/Tensor 

Factorization (NMF and NTF)  and other Variants (e.g. 

Sparse NMF, SymNMF, and JointNMF)

Why CLRA such as NMF and NTF?

Utilize advances in numerical linear algebra 

algorithms and software,  Behavior of algorithm 

easier to understand and analyze,  Facilitates design 

of MPI based algorithms for scalable solutions

PPoPP’16, TKDE’18, PPoPP’18, IPDPS’18, JGO’18 
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Fig. 8: NMF comparison on webbase-2001 for k=50 on 1536
processors.

7 Conclusion

In this paper, we propose a high-performance distributed-memory
parallel framework for NMF algorithms that iteratively update
the low rank factors in an alternating fashion. Our parallelization
scheme is designed to avoid communication overheads and scales
well to over 1500 cores. The framework is flexible, being (a)
expressive enough to leverage many di↵erent NMF algorithms
and (b) e�cient for both sparse and dense matrices of sizes
that span from a few hundreds to hundreds of millions. Our
open-source software implementation is available for download.

For solving data mining problems at today’s scale, parallel
computation and distributed-memory systems are becoming
prerequisites. We argue in this paper that by using techniques
from high-performance computing, the computations for NMF
can be performed very e�ciently. Our framework allows for the
HPC techniques (e�cient matrix multiplication) to be separated
from the data mining techniques (choice of NMF algorithm), and
we compare data mining techniques at large scale, in terms of
data sizes and number of processors. One conclusion we draw
from the empirical and theoretical observations is that the extra
per-iteration cost of ABPP over alternatives like MU and HALS

decreases as the number of processors p increases, making ABPP

more advantageous in terms of both quality and performance at
larger scales. By reporting time breakdowns that separate local
computation from interprocessor communication, we also see
that our parallelization scheme prevents communication from
bottlenecking the overall computation; our comparison with a
naive approach shows that communication can easily dominate
the running time of each iteration.

In future work, we would like to extend MPI-FAUN algo-
rithm to dense and sparse tensors, computing the CANDE-
COMP/PARAFAC decomposition in parallel with non-negativity
constraints on the factor matrices. We plan on extending our soft-
ware to include more NMF algorithms that fit the AU-NMF frame-
work; these can be used for both matrices and tensors. We would
also like to explore more intelligent distributions of sparse matri-
ces: while our 2D distribution is based on evenly dividing rows and
columns, it does not necessarily load balance the nonzeros of the
matrix, which can lead to load imbalance in matrix multiplications.
We are interested in using graph and hypergraph partitioning
techniques to load balance the memory and computation while at
the same time reducing communication costs as much as possible.
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Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,
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(a) Sparse Synthetic
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(b) Dense Synthetic
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(c) Sparse Real World (webbase-1M)
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(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,

Sparse Webbase – 1M Vertex             Dense real world-video

https://github.com/ramkikannan/nmflibrary


GraviT Distributed Ray Tracing Framework
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Bring photo-quality rendering to your large-data visualizations 
through ray tracing, and now integrated into the SI2 yt project!

OpenGL version – flat lighting, constant shadows, limited depth perception Embree RT version with ‘glass’ planes –
integrated, realistic material behavior 
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A MACHINE LEARNING GATEWAY FOR 
SCIENTIFIC WORKFLOW DESIGN

Akos Ledeczi (PI) · Brian Broll · Tamas Budavari · Peter Volgyesi

DeepForge is an open source platform for deep learning designed for promoting 
reproducibility, simplicity and rapid development within diverse scientific domains. 

· web application
· model-based design
· online collaboration
· project history
· job management

WEBGME

TENSORFLOW

· DNN architectures
· custom workflows
· alternative engines:
  CNTK, Theano

NSF SI2-SSE  #1740151



Why you must visit our poster!

• BLIS: Framework for 
Rapid Instantiation of 
BLAS-like functionality 

• libflame: LAPACK 
functionality 

• TBLIS: A C++ tensor 
contraction library

• Professional development 
for scientific software 
scientists 

• Massive outreach through 
Massive Open Online 
Courses.  (145,000 
participants to date) 

• Cultivation of external 
contributors

SHPCThe Science of  
High-Performance 
Computing Group

A modern dense linear algebra 
software stack

Effective outreach



Michelle Borkin, PI 
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@michelle_borkin

Alyssa Goodman, PI 
Harvard University 
@AlyssaAGoodman

Thomas Robitaille 
Lead Architect 
@astrofrog

@glueviz
Linked-View  

Exploratory Visualization  
of High-Dimensional Data,  

for Everyone
Alyssa Goodman (PI, Harvard) 
Michellle Borkin (PI, Northeastern)  
Thomas Robitaille (Lead Architect)

glueviz.org github.com/glue-viz

The glue project was founded in 2012, with funding from 
NASA’s James Webb Space Telescope (JWST) project. NASA 
contracts continue to support development of JWST-related 
(Astronomy) functionality. 

Beginning in 2017, glue has also been funded by the National 
Science Foundation, under SI2-SSE 1739657/1740229: 
Collaborative Research: A sustainable future for the glue multi-
dimensional linked data visualization package.  The goal of the 
NSF SSE funding is to expand glue’s functionality into domains 
beyond its traditional strengths in Astronomy and Medicine, by 
broadening both its user and developer communities.

All glue code is Open Source, at github.com/glue-viz

“InfoVis” & “SciVis” TOGETHER GIS compatible

Medical Imaging

User-defined “Dimensions”

1D, 2D, 3D All linked live

New! Jupyter Lab functionality

Want to plug-in your 
project or tool?   

Consider joining us for 
glue-con,  

right after JupyterCon,  
August 27-29, 2018,  

at Harvard.

WorldWide 
Telescope 

Plugin

glue’s modular design 

glueviz.slack.com

projects.iq.harvard.edu/gluecon



Massively Parallel Solvers for Computational Fluid 
Dynamics on Block Structured Cartesian Grids

Jaber Hasbestan, Scott Aiton, Brenton Peck, Donna Calhoun, Inanc Senocak, Grady Wright*; https://github.com/GEM3D

Refinement level 10 12 14 16

Red-black tree 3.3 21.14 69.75 145.87

Z-curve enhanced hash function 3.7 26.85 87.85 180.01

C++ STL default hash function 4.89 39.95 138.19 272.97

Block Structured Cartesian AMR

Highly scalable red-black binarized-
octree for generating and managing 
the adaptively refined grids

(
r2p = f on ⌦

n ·rp = 0 on @⌦
<latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA="></latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA="></latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA="></latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA="></latexit>

Solve: for p given f,

where n is the unit outward normal vector to ⌦.
<latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE="></latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE="></latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE="></latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE="></latexit>
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Automated Detection and Repair of Errors  
in Event-Driven Applications

Frank Tip 

College of Computer and Information Science, Northeastern University 
www.franktip.org

• modern applications rely on event handling for, e.g., user input, network communication 

• key operations: register event handlers, emit events, call-back to event handler 

• programmer errors are common, and lead to hard-to-debug failures 

- e.g., event race errors depending on nondeterministic scheduling of event handlers 

• research goal: provide programmers with better tools to detect and repair such errors 

- based on static & dynamic program analysis

http://www.franktip.org
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OBJECTIVE 01

Water Quality 
Sampling Campaign

Collaborative RAPID
BUILDING INFRASTRUCTURE TO PREVENT DISASTERS LIKE HURRICANE MARIA
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OBJECTIVE 03

Cyberinfrastructure 
Advances

Expected 
Science Outcomes

Drinking water samples from 
public streams

Spatially aggregated 
anonymized information of the 
impact zone

PRASA Utility, community 
operated tank system, 
household data 

Teacher collection of student 
health data (IRB)

Water samples with personal 
information

De-identified water samples 
that can be geo-located

Population health 
researcher user-testing

Water quality professionals 
and researchers user 
testing

Individual data owners user 
testing

Baseline assessment: Population 
Health Data, Healthcare Providers 
and supporting organizations, 
natural system environmental 
variables, Public Water System 
location and infrastructure status.

Hurricane Maria health and 
environmental data from public 
data repositories and Luquillo 
CZO instruments in El Yunque 
National Park

LANDLAB raster model grid 
and diverse data formats

Observation Data Model 
(ODM2)

DISASTER:
Contamination, drought, 
landslides, bio-diversity

DRINKING WATER:
Geographic location and 
use data

HUMAN IMPACT:
Spatial distribution of 
contamination or drought



PAPI-EX
Performance Application Programming Interface for Extreme-scale Environments

SI2-SSI-1450122

• Performance Measurement Library

• Cross-platform

• Widely used in Supercomputing Environments

• Find Bottlenecks in your code!

• Measure raw performance, architectural e↵ects

(Cache, Branch Predictor, etc.), Power and Energy

• Supports most modern computing hardware

• Companion tools: PAPI-ex, Counter Inspection Toolkit

Jack Dongarra, Heike Jagode, Anthony Danalis

University of Tennessee

Vince Weaver

University of Maine



What is MATPOWER?
• Set of free, open-source, Matlab language tools

• compatible with MATLAB® and GNU Octave
• For steady-state power system simulation and 

optimization, including:
• power flow (PF)
• extensible, optimal power flow (OPF)

MATPOWER’s Unique Combination
• free, open-source license (BSD)
• code that is easy to understand, customize
• state-of-the-art, high performance solvers
• ready-to-use realistic data included

MATPOWER boosted to de facto standard
• benchmark platform for power systems research
• educational tool for power systems engineers 

and optimization

Project Overview
Expand MATPOWER’s future impact as a successful 
research-enabling tool for the problems of the 
power systems of the future by providing the project 
infrastructure and core software architecture 
needed to facilitate ongoing community-supported 
growth.

MATPOWER Project Infrastructure
• Transition to fully collaborative open development 

paradigm with, public code repository, issue tracker, 
user and developer forums, contributor guidelines, 
public list of project descriptions

MATPOWER Core Software Architecture
• Redesign core software around a general modular 

architecture to enable more flexible user 
customization and facilitate significant user 
contributions, while retaining and enhancing the 
simplicity that makes it attractive in education
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CRII: OAC: A Hybrid Finite Element and Molecular 
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STAMLA: Scalable Tree Algorithms for Machine Learning Applications

Summary
A software architecture challenge to design a unified set of high performance tree abstractions.

Ordered

Unordered

Ordering

Depth �rst pre-order
Depth �rst post-order
Leaves only

Breadth �rst
Traversal

Dynamic
Level dependent

Static

Arity

Static

Dynamic

Depth

Explicit

Implicit

Representation

NSF-SI2-2018 Meeting - Vincent Reverdy & Robert J. Brunner - May 2018 1



SI2-SSE: C11Tester: Scaling Testing of C/C++11 Atomics 
to Real-World Systems
Brian Demsky, University of California, Irvine

C/C++11 
Application Code

Compiled code 
linked into the 

C11Tester Library

Extensible 
Plugins

C11Tester 
Framework 

• Modern programming languages provide atomic 
operations 

• Atomic operations: 
• Make it possible to build faster, more scalable data structures 

with stronger guarantees
• Expose developers to complex behaviors that arise from CPU & 

compiler optimization
• Are extremely difficult to use correctly

• C11Tester project is building tools to help developers 
effectively test code with atomic operations

Bugs
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Bringing higher end computational tools to the bench 
scientist to accelerate the discovery process.

Current grant coming to a close.

Working on transitioning to Community 
efforts and how to coordinate new 
efforts going forward.

Several new projects being proposed -- plus
• Networking/workshop grants

• COST action proposal in Europe 
• looking at various US opportunities
• Nurture involvement from major 

facilities

OTHER IDEAS WELCOME



The project includes (left) growth and characterization, (middle) iterative modeling, and (right) design training and
validation. Single-frame red boxes represent experimental samples and data, while double-framed blue boxes
represent computational products. The shaded region in the middle represents the application of particle swarm
optimization. The general flow can be understood as: (1) growth of samples varied by composition and growth
procedures; (2) experimental structural characterization; (3) iterative model simulation using characterization data;
(4) ANN training to link simulation and growth parameters followed by predictive application of the ANN.



Hearing the Signal through the Static: Realtime Noise Reduction in the 
Hunt for Binary Black Holes and other Gravitational Wave Transients

Sydney Chamberlin1, Reed Essick2, Patrick Godwin1, Chad Hanna1, Erik Katsavounidis3, Duncan Meacher1, Madeline Wade4
1The Pennsylvania State University, University Park, PA, 16801

2University of Chicago, Chicago, IL 60637
3Massachusetts Institute of Technology, Cambridge, MA 02139

4Kenyon College, Gambier, OH 43022
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Real-time GW searches are 
plagued by “glitches”.  E.g., 
GW170817 - a binary neutron 
star merger - had a delayed 
alert because we had to deal 
with data quality issues.

Goal: use machine learning to 
classify glitches in real-time in 
based on auxiliary information 
like seismometers, 
magnetometers, etc.

Currently can reject ⅔ of the 
glitches with a 1% false 
dismissal. Working to make it 
even better.



RADICAL-Cybertools: Building Blocks 
for Workflow System Middleware

Motivation: Sophisticated and scalable workflows have become essential 
for advances in computational science. In spite of the many successes of 
workflow systems, there is an absence of a reasoning framework for 
end-users to determine which systems to use, when and why. Workflows 
are increasingly a manifestation of the algorithmic and methodological 
advances; workflow users and workflow system developers are often the 
same. Workflow systems must be easily extensible so as to support 
diverse functionality and the proverbial “last mile customization”. 

We advance the science of workflows and prevent workflow system 
“vendor lockin” by formulating a building blocks approach to middleware 
for workflow systems grounded on four design principles of 
self-sufficiency, interoperability, composability, and extensibility. A 
building block has: (i) one or more modules implementing functionalities 
to operate on a set of explicitly defined entities; and (ii) two well-defined 
and stable interfaces, one for input and one for output.

Properties of building blocks
● Self-sufficiency: design does not depend on the specificity of other 

building blocks
● Interoperability: can be used in diverse system architectures without 

semantic modifications
● Composability: its interfaces enable communication and coordination 

with other building blocks
● Extensibility: its functionalities and entities can be extended to 

support new requirements or capabilities

Overview

RADICAL-Cybertools are designed and implemented in accordance with 
the building block approach, spanning four functional levels:

(L4) Workflow and Application Description: Requirements and 
        semantics of applications and workflows.

(L3) Workload Management System (WLMS): Applications devoid of 
semantic context are expressed as  workloads.

(L2) Task Runtime System (TRS):
Execution of the tasks of 
a workload. 

(L1) Resource:
Capabilities, availability and 
interfaces required by the 
tasks to be executed.

RADICAL-Cybertools are used at each level to support scalable, efficient 
and effective use of high-performance and distributed computing.

RADICAL-Cybertools: An implementation of the 
Building Block Approach to  Middleware

RADICAL-SAGA (Simple API for Grid Applications): Provides an 
interoperability layer that lowers the complexity of using distributed 
infrastructure whilst enhancing sustainability of distribut- ed 
applications, services, and tools in the form of a Python API. By 
abstracting away the heterogeneity of the underlying systems, 
RADICAL-SAGA simplifies access to many distributed cyberinfrastruc- 
tures such as XSEDE and OSG.

(L2-L1) Interface to Resource
ExTASY: Enables sampling of complex macromolecules with molecular 
dynam- ics. It supports high-performance and high-throughout 
execution of molecular dynamic calculations, and analysis tools that 
provide runtime control over a simulation.

HTBAC: Enables the scalable, adaptive and automated calculation of 
the binding free energy on high-performance computing resources. 

RepEx: Enables performing Replica Exchange simulations at a scale 
which is not attainable by stand-alone molecular dynamics 
applications. It uses RADICAL-Pilot for workload execution.

ICEBERG: Enables scalable image analysis on high-performance 
distributed computing for geoscience research. It provides a library 
based on extensible building-blocks that allows the integration of 
frameworks and algorithms seamlessly.

(L4) Applications and Scientific Workflows

Ensemble Toolkit:  Provides the ability to execute flexible combinations 
of ensemble- based applications on high-performance distributed 
computing resources. Ensemble Toolkit takes charge of where and how 
the workload is distributed: users only have to worry about what to run 
and when.

(L3) Workload Management

SeisFlows
● Supports seismic inversion workflows on HPC machines, at scale
● We integrated SeisFlow

○ with RADICAL-SAGA (L1) to execute compute jobs
○ with RADICAL-EnTK (L3) to orchestrate tasks and data staging

Atlas (Panda and Harvester)
● PanDA is a WMS designed to support the distributed execution of 

workflows via pilots.  
● Harvester is a service which provides pilot and workload 

management to Panda
● We integrated Panda and  RADICAL-Pilot to improve its scaling on 

large HPC resources, and integrated Harvester and RADICAL-Pilot to 
provide scalable task execution on HPC machines

Swift
● Swift is a language and a runtime system to execute workflows.
● We integrated Swift with RADICAL-WLMS (L3) to execute workloads 

concurrently on HPC and HTC resources.

Fireworks
● Fireworks is a system that enables material science workflows 
● We integrate Fireworks and RADICAL-Pilot (L2) to improve its scaling 

on HPC resources

Integration with existing systems

RADICAL-Pilot: Scalable pilot system for the simple and versatile 
execution of  concurrent and distributed many-task applications on 
clusters, grids, and clouds. RADICAL-Pilot offers users a lightweight 
Python API to handle a variety of workloads—including MPI, 
multiprocess, multithreaded, CPU, and GPU tasks—and scheduling 
O(10k) tasks while marshalling O(10k) distributed cores.

(L2) Task Runtime Management



Learning	Directed	Acyclic	Graphs	(DAGs)	

•  Generally	NP-hard	
•  Not	scalable	
•  Stringent	assumptions		

Large	Network	Properties	
•  Polynomial	(n3)	Alg.	
•  Scalable	to	large	systems	
•  Relaxed	assumptions	

Large-Scale	Causal	Structure	Learning	
CDS&E:	Statistical	Methods	for	Discrete-Valued	High-Dimensional	Time	Series		

Ali	Shojaie	
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SI2-SSE: ShareSafe: A Framework for Researchers and 
Data Owners to Help Facilitate Secure Graph Data 

Sharing


