
Making Software Engineering Work for
Computational Science & Engineering:

An Integrated Approach

Jeffrey C. Carver
George K. Thiruvathukal 1445344

1445347

Conceptualization of a Software Institute for High Energy Physics

• High-energy Physics: Software &
Computing enables our science

• Big challenges ahead for the High-
Luminosity (HL-)LHC era
• x10 projected shortfall of CPU & storage

<μ>=200

• Advances in hardware will not get us
there à need advances in Software!

• Community process à Strategic Plan
for a HEP Software Institute

M. Neubauer
Supported by ACI-1558233

P. Elmer, M. Sokoloff
ACI-1558216, ACI-1558219

Automated synchronization and boundary
condition application for the Cactus framework

Samuel Cupp, Steven Brandt, Peter Diener
Louisiana State University

z Cactus Framework is an open-source environment for numerically solving
Cauchy problems in parallel

z Current ghost zone synchronization and boundary condition application
requires non-trivial, manual scheduling by programmers

z PreSync project replaces old system with an automated scheme
z Tracks region of validity for grid functions (interior or everywhere)
z Schedules synchronization and boundary conditions as needed

z PreSync reduces burden on users and programmers to understand inner
workings of the Cactus Framework

We are supported by NSF Grant #1550551.

SI2-SSI:
Integrating Data with Complex Predictive Models under Uncertainty:
An Extensible Software Framework for Large-Scale Bayesian Inversion

Data Models Decisions
Informed

Spacing Around Wordmark

.5 H

.5 H

H

.5 H

.5 H

SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty:
An Extensible Software Framework for Large-Scale Bayesian Inversion

Omar Ghattas�, Youssef Marzouk�, Matthew Parno�, Noemi Petra†, Umberto Villa�

�Institute for Computational Engineering and Sciences, The University of Texas at Austin
�Center for Computational Engineering, Massachusetts Institute of Technology

†School of Natural Sciences, University of California, Merced

Introduction
Needs and motivation
� Inverse problems are a natural way of extracting knowledge from data via models, and

is a critical precursor to prediction.
� Bayesian inference provides a comprehensive and systematic framework for formulating

and solving inverse problems under uncertainty.
� Bayesian inversion with conventional algorithms and software is prohibitive for complex

models and high dimensional parameter spaces.
� Intensive research efforts are creating advanced algorithms that exploit posterior struc-

ture to efficiently tackle previously intractable problems.
� Despite their incredible potential, these new algorithms have not been made accessible

to a broad community of scientists and engineers interested in solving inverse problems.

Intellectual merits
� Develop, deploy, and support robust, scalable, high-performance, open-source software
� Provide reference implementations of advanced Bayesian inversion algorithms
� Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts
� Facilitate the wider adoption of Bayesian tools in simulation-driven science
� Reduce software barriers so that any scientist or engineering can efficiently integrate

data with models to quantify and reduce uncertainties

Bayesian Formulation of Inverse Problems
� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, con-

struct a probabilistic description of the model parameters that accounts for both the
observations and prior information.

� Solving the inverse problem amounts to characterizing the posterior distribution: draw-
ing samples; estimating the mean, covariance, or higher moments; evaluating the pos-
terior probabilities of particular events or quantities of interest

Uncertain parameter m
Bayesian inversion

�post(m|y) � �like(y|m)�0(m)
Experimental

data y

Mathematical Model
A(m, u) = f

Quantity of Interest (QoI)
Q(m)

Mean Samples

P
ri

or
Po

st
er

io
r

Truth
posterior

prior

�like(y|m)=�noise(Bu � y)

Figure: The process of extracting knowledge from data by solving inverse problems

Software Framework
MUQ and hIPPYlib
MUQ and hIPPYlib have complementary capabilities that
together provide a unique software framework for large-
scale Bayesian inversion.

MUQ (MIT Uncertainty Quantification library) provides tools
for:
� Enables exact posterior sampling, via structure-exploiting

Markov chain Monte Carlo (MCMC) algorithms
� Facilitates variational approaches to Bayesian inference,

i.e., transport maps
� Can approximate computationally intensive models
� Contains tools for complex Gaussian random fields
� Supports specifiying complex models in a modular fashion

Chain Kernel Proposal

AMALA

AM

RW

smMALA

HMC

MH

DR

TM

IA

Single

Multi

Figure : The major com-
ponents of MCMC: a
chain, a transition kernel,
and a proposal

hIPPYlib (Inverse Problems Python library)
� Implements state-of-the-art scalable algorithms to solve PDE-based deterministic and

linearized Bayesian inverse problems
� Supports linear and nonlinear, stationary, and time-dependent PDEs
� Expresses the forward PDE and likelihood in weak form using the friendly, compact,

near-mathematical notation of FEniCS
� Employs FEniCS symbolic differentiation capabilities to construct high-order derivatives

of parameter-to-observable maps, thereby exploiting geometry of the posterior

MUQ-hIPPYlib integration

FE
ni
CS
'

Geometry,)mesh)

Finite)element)spaces)

FE)assembly)of)weak)forms)

AD)of)weak)forms)

Krylov)methods)

Precondi>oners)PE
TS
c'

hI
PP

Yl
ib
'

co
m
po

ne
nt
s' Large/∞)

Gaussians)

Library)of)priors)
Parameter)domain)
Covariance/precision)
operators)

Coefficient)form)
Weak)form)
Explicit)first/secondIorder)
forward/adjoint)PDEs)

Forward)
problem)

Globalized)inexact)NewtonICG)methods)
MAP)es>ma>on)

hI
PP

Yl
ib
'a
lg
or
ith

m
s'

Trace/diagonal)es>mators)

Gradient)evalua>on/Hessian)ac>on)

Low)rank)decomposi>ons)
Local)Gaussian)approxima>ons)

Gaussian)sampling)

Forward/adjoint)solver)

M
U
Q
'

M
od

el
in
g'

Graphical)model)specifica>on)
Bayesian)hierarchical)modeling)
Gradient/Hessian)propaga>on)

MUQ'ModPieces' Abstract)model)interface.)Encompasses)PDE)models,)probability)distribu>ons,)random)fields)

M
U
Q
'A
lg
or
ith

m
s'

Markov)chain)Monte)Carlo)
Transport)maps)
LikelihoodIinformed)subspaces))
)
)
Sparse)adap>ve)gPC)
Local)GP/poly)approxima>ons)
Stochas>c)emulators)
)
)

Predic>on)
tools)

Surrogates)&)
approxima>ons)

Posterior)
sampling)

Sensi>vity)analysis)
Op>mal)experimental)design)

Figure: Illustration of the MUQ and hIPPYlib components and their integration

Code design and philosophy
� Goal: Make the software efficient and scalable as well as easy to use at all user levels
� Software abstractions follow mathematical abstraction
� Highly adaptable modeling framework that encourages code reuse, facilitates construc-

tion of complex or hierarchical models, allows for algorithmic innovation
� Modular structure that allows for seamless experimentation with different models and

testing of a variety of structure exploiting algorithms
� Three distinct user interfaces make software accessible to users with different mathe-

matical backgrounds and programming experience

Education and Outreach
Teaching and research
� Early community adoption by researchers at Heidelberg, Bath, and Exeter.
� Graduate-level courses on inverse problems and uncertainty quantification at MIT, NC

State, NYU, UC Merced, and UT Austin use hIPPYlib and/or MUQ as a teaching tool
� A dozen graduate students and five postdocs at MIT, UC Merced, and UT Austin are

using MUQ and/or hIPPYlib for their research and dissertations
� Several other projects are using MUQ-hIPPYlib:

� Characterization of boundary loads on lock gates from strain observations (ERDC)
� Inversion for coupled flow–geomechanics to understand induced seismicity (MIT)
� Inversion and prediction of ice sheet dynamics using parallel MCMC (MIT)
� Optimal sequential experimental design for mobile sensor platforms (MIT)
� Inference, prediction and optimization under uncertainty for turbulent combustion (UT)
� Inversion and control for CO2 sequestration with poroelastic models (UT)
� Inversion for material properties of cardiac tissue (UT)
� Inference of constitutive laws in mechanics of nano-scale filaments (UC Merced)
� Inference of basal boundary conditions for ice sheet flow (UC Merced)

� Adoption of MUQ-hIPPYlib by the Army Corps of Engineers; deployment of MUQ at
Sandia National Laboratories; community engagement with new academic users.

Papers, proceedings, and conference presentations
� MUQ and hIPPYlib development has supported 7 published peer-reviewed articles and

another 6 manuscripts currently submitted
� Over 20 conference or invited seminar presentations since January 2016 on research

results obtained via MUQ and/or hIPPYlib

Pedagogic presentations, short courses, & summer schools
� Inverse Problems: Systematic Integration of Data with Models under Uncertainty, Grant

awarded for the 2018 Gene Golub SIAM Summer School
� hIPPYlib: An Extensible Software Framework for Large-Scale Deterministic and Lin-

earized Bayesian Inverse Problems, SAMSI Summer School, SAMSI, Research Trian-
gle Park, NC, 8–12 August, 2016

� QUEST Uncertainty Quantification Summer School, USC, 19–21 August, 2015
� Inverse Problems and Uncertainty Quantification, ICERM IdeaLab, Brown University,

6–10 July, 2015
� Introduction to Uncertainty Quantification, IMA Short Course, University of Minnesota,

15–26 June, 2015

Figure: Left to right: MUQ at ICERM, ICERM IdeaLab attendees, IMA Short Course

Code repositories
� http://muq.mit.edu � http://hippylib.github.io

Acknowledgement
This work was partially supported by National Science Foundation grants ACI-1550487,
ACI-1550547, and ACI-1550593.

NSF SI2 PI Meeting, Arlington, VA, 2017

Spacing Around Wordmark

.5 H

.5 H

H

.5 H

.5 H

SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty:
An Extensible Software Framework for Large-Scale Bayesian Inversion

Omar Ghattas�, Youssef Marzouk�, Matthew Parno�, Noemi Petra†, Umberto Villa�

�Institute for Computational Engineering and Sciences, The University of Texas at Austin
�Center for Computational Engineering, Massachusetts Institute of Technology

†School of Natural Sciences, University of California, Merced

Introduction
Needs and motivation
� Inverse problems are a natural way of extracting knowledge from data via models, and

is a critical precursor to prediction.
� Bayesian inference provides a comprehensive and systematic framework for formulating

and solving inverse problems under uncertainty.
� Bayesian inversion with conventional algorithms and software is prohibitive for complex

models and high dimensional parameter spaces.
� Intensive research efforts are creating advanced algorithms that exploit posterior struc-

ture to efficiently tackle previously intractable problems.
� Despite their incredible potential, these new algorithms have not been made accessible

to a broad community of scientists and engineers interested in solving inverse problems.

Intellectual merits
� Develop, deploy, and support robust, scalable, high-performance, open-source software
� Provide reference implementations of advanced Bayesian inversion algorithms
� Enable the solution of Bayesian inverse problems of unprecendent size and realism

Broader impacts
� Facilitate the wider adoption of Bayesian tools in simulation-driven science
� Reduce software barriers so that any scientist or engineering can efficiently integrate

data with models to quantify and reduce uncertainties

Bayesian Formulation of Inverse Problems
� Goal: given (noisy, indirect) data and a deterministic or stochastic forward model, con-

struct a probabilistic description of the model parameters that accounts for both the
observations and prior information.

� Solving the inverse problem amounts to characterizing the posterior distribution: draw-
ing samples; estimating the mean, covariance, or higher moments; evaluating the pos-
terior probabilities of particular events or quantities of interest

Uncertain parameter m
Bayesian inversion

�post(m|y) � �like(y|m)�0(m)
Experimental

data y

Mathematical Model
A(m, u) = f

Quantity of Interest (QoI)
Q(m)

Mean Samples
P

ri
or

Po
st

er
io

r

Truth
posterior

prior

�like(y|m)=�noise(Bu � y)

Figure: The process of extracting knowledge from data by solving inverse problems

Software Framework
MUQ and hIPPYlib
MUQ and hIPPYlib have complementary capabilities that
together provide a unique software framework for large-
scale Bayesian inversion.

MUQ (MIT Uncertainty Quantification library) provides tools
for:
� Enables exact posterior sampling, via structure-exploiting

Markov chain Monte Carlo (MCMC) algorithms
� Facilitates variational approaches to Bayesian inference,

i.e., transport maps
� Can approximate computationally intensive models
� Contains tools for complex Gaussian random fields
� Supports specifiying complex models in a modular fashion

Chain Kernel Proposal

AMALA

AM

RW

smMALA

HMC

MH

DR

TM

IA

Single

Multi

Figure : The major com-
ponents of MCMC: a
chain, a transition kernel,
and a proposal

hIPPYlib (Inverse Problems Python library)
� Implements state-of-the-art scalable algorithms to solve PDE-based deterministic and

linearized Bayesian inverse problems
� Supports linear and nonlinear, stationary, and time-dependent PDEs
� Expresses the forward PDE and likelihood in weak form using the friendly, compact,

near-mathematical notation of FEniCS
� Employs FEniCS symbolic differentiation capabilities to construct high-order derivatives

of parameter-to-observable maps, thereby exploiting geometry of the posterior

MUQ-hIPPYlib integration

FE
ni
CS
'

Geometry,)mesh)

Finite)element)spaces)

FE)assembly)of)weak)forms)

AD)of)weak)forms)

Krylov)methods)

Precondi>oners)PE
TS
c'

hI
PP

Yl
ib
'

co
m
po

ne
nt
s' Large/∞)

Gaussians)

Library)of)priors)
Parameter)domain)
Covariance/precision)
operators)

Coefficient)form)
Weak)form)
Explicit)first/secondIorder)
forward/adjoint)PDEs)

Forward)
problem)

Globalized)inexact)NewtonICG)methods)
MAP)es>ma>on)

hI
PP

Yl
ib
'a
lg
or
ith

m
s'

Trace/diagonal)es>mators)

Gradient)evalua>on/Hessian)ac>on)

Low)rank)decomposi>ons)
Local)Gaussian)approxima>ons)

Gaussian)sampling)

Forward/adjoint)solver)

M
U
Q
'

M
od

el
in
g'

Graphical)model)specifica>on)
Bayesian)hierarchical)modeling)
Gradient/Hessian)propaga>on)

MUQ'ModPieces' Abstract)model)interface.)Encompasses)PDE)models,)probability)distribu>ons,)random)fields)

M
U
Q
'A
lg
or
ith

m
s'

Markov)chain)Monte)Carlo)
Transport)maps)
LikelihoodIinformed)subspaces))
)
)
Sparse)adap>ve)gPC)
Local)GP/poly)approxima>ons)
Stochas>c)emulators)
)
)

Predic>on)
tools)

Surrogates)&)
approxima>ons)

Posterior)
sampling)

Sensi>vity)analysis)
Op>mal)experimental)design)

Figure: Illustration of the MUQ and hIPPYlib components and their integration

Code design and philosophy
� Goal: Make the software efficient and scalable as well as easy to use at all user levels
� Software abstractions follow mathematical abstraction
� Highly adaptable modeling framework that encourages code reuse, facilitates construc-

tion of complex or hierarchical models, allows for algorithmic innovation
� Modular structure that allows for seamless experimentation with different models and

testing of a variety of structure exploiting algorithms
� Three distinct user interfaces make software accessible to users with different mathe-

matical backgrounds and programming experience

Education and Outreach
Teaching and research
� Early community adoption by researchers at Heidelberg, Bath, and Exeter.
� Graduate-level courses on inverse problems and uncertainty quantification at MIT, NC

State, NYU, UC Merced, and UT Austin use hIPPYlib and/or MUQ as a teaching tool
� A dozen graduate students and five postdocs at MIT, UC Merced, and UT Austin are

using MUQ and/or hIPPYlib for their research and dissertations
� Several other projects are using MUQ-hIPPYlib:

� Characterization of boundary loads on lock gates from strain observations (ERDC)
� Inversion for coupled flow–geomechanics to understand induced seismicity (MIT)
� Inversion and prediction of ice sheet dynamics using parallel MCMC (MIT)
� Optimal sequential experimental design for mobile sensor platforms (MIT)
� Inference, prediction and optimization under uncertainty for turbulent combustion (UT)
� Inversion and control for CO2 sequestration with poroelastic models (UT)
� Inversion for material properties of cardiac tissue (UT)
� Inference of constitutive laws in mechanics of nano-scale filaments (UC Merced)
� Inference of basal boundary conditions for ice sheet flow (UC Merced)

� Adoption of MUQ-hIPPYlib by the Army Corps of Engineers; deployment of MUQ at
Sandia National Laboratories; community engagement with new academic users.

Papers, proceedings, and conference presentations
� MUQ and hIPPYlib development has supported 7 published peer-reviewed articles and

another 6 manuscripts currently submitted
� Over 20 conference or invited seminar presentations since January 2016 on research

results obtained via MUQ and/or hIPPYlib

Pedagogic presentations, short courses, & summer schools
� Inverse Problems: Systematic Integration of Data with Models under Uncertainty, Grant

awarded for the 2018 Gene Golub SIAM Summer School
� hIPPYlib: An Extensible Software Framework for Large-Scale Deterministic and Lin-

earized Bayesian Inverse Problems, SAMSI Summer School, SAMSI, Research Trian-
gle Park, NC, 8–12 August, 2016

� QUEST Uncertainty Quantification Summer School, USC, 19–21 August, 2015
� Inverse Problems and Uncertainty Quantification, ICERM IdeaLab, Brown University,

6–10 July, 2015
� Introduction to Uncertainty Quantification, IMA Short Course, University of Minnesota,

15–26 June, 2015

Figure: Left to right: MUQ at ICERM, ICERM IdeaLab attendees, IMA Short Course

Code repositories
� http://muq.mit.edu � http://hippylib.github.io

Acknowledgement
This work was partially supported by National Science Foundation grants ACI-1550487,
ACI-1550547, and ACI-1550593.

NSF SI2 PI Meeting, Arlington, VA, 2017

Software framework (Python/c++) for large-scale Bayesian inference

Easy to use for both users and algorithm developers

Combined capabilities of MUQ and hIPPylib

This work was partially supported by National Science Foundation grants ACI-1550487, ACI-1550547, and ACI-1550593.

(MUQ+hIPPYlib) Ghattas, Marzouk, Parno, Petra, Villa 2018 NSF SI2 PI Meeting 1 / 1

SI2-SSE: Improving Scikit-learn
usability and automation

> 150 models 20.000 datasets

=

+

Meta
learning

Andreas C. Müller, Columbia Data Science Institute

time

expectations

1970 1980 1990 2000 2010 2020

Innovation

Great

Expectations

Disillusionment Enlightenment

Productivity

Symbolic Toolboxes for Differential Geometry
and Mathematical Physics

• Symbolic computation – computer algebra

• Expert Systems: toolboxes and libraries for domain scientists and educators

• Multiple domains: Differential geometry, Lie theory, general relativity and field
theory, geometry of differential equations

• Vertically integrated, interdisciplinary curriculum development

Project Highlights

SI2-SSE: Development of a Software Framework for Formalizing
ForceField Atom-Typing for Molecular Simulation
Christopher R. Iacovella1, Peter Volgyesi2 and Janos Sallai2  
1 Department of Chemical and Bimolecular Engineering, Vanderbilt University,  
2 Institute for Software Integrated Systems, Vanderbilt University

• Defining parameter usage via SMARTS and overrides

- Encode chemical context using the SMARTS language for defining molecular patterns

opls_135 = [C;X4](C)(H)(H)H
- Set rule precedence via “overrides”

opls_148 = [C;X4]([C;X3])(H)(H)H overrides=opls_135

- Rules are both human and machine readable and can be tested for accuracy and completeness

• Challenge: Develop a general scheme to encode and apply forcefield parameter rules

- Forcefields describe the way atoms and collections of atoms interact via a set of adjustable parameters

- Can contain thousands of sets that are differentiated by the chemical context of an atom, e.g,:
- number of bonds, identity of bonded neighbors, local-environment of bonded neighbors, etc.

- Rules for usage are typically hard-coded into software as a deeply nested hierarchy with specific rule order
- This approach can be difficult to debug, extend, and disseminate

• Foyer: General Python library for applying forcefields

- Atom types assigned using matching patterns  

determined by performing a subgraph  
isomorphism on the system graph

- Rules can be evaluated in any order
- Uses a fixed point iterative scheme that creates  

white- and blacklists, rather than rigid hierarchy
- Source code does not change when rules change

- Allows for easier testing, validation, versioning and dissemination

SI2-SSI: Integrated Molecular Design Environment for
Lubrication Systems (iMoDELS)
Peter Cummings1, Clare McCabe1, Ákos Lédeczi1, Gabor Karsai1, Adri van Duin2, Paul Kent3 
1 Vanderbilt University, 2 Pennsylvania State University, and 3 Oak Ridge National Laboratory

mb.Polymer

mb.Monolayer

mb.TiledCompound
-CH2

Alkane

Duplicated
silica

Alkane-functionalized silica Crystalline
silica

• mBuild: a Hierarchical, Component
Based Molecule Builder written in
Python

- Construct complex systems from smaller,
interchangeable pieces

- Enable programmatic variation of chemistry,
required for screening

• metaMDS: define parameter landscape for screening

N
OO

F

HN

N
OO

OHNH2 CH3

CH2

FF
F

O

CH3N

OHOCH3O

Si

n
HO
HO

Silica

programmatically  
vary chemistry

identify relationships between
chemistry and tribology

• Challenge: Improved lubrication strategies required for devices with nanoscale separations

- Molecular simulation can be used to understand lubrication at the molecular level

- Use this to screen for relationships between chemistry and tribology (i.e., lubrication properties)

Advancing Analysis for HEP

ROOT

Spark-
ROOT

Spark

uproot

OAMap

Python

Anaconda High Level Tools
We are therefore striving to
present HEP analysis with
higher-level interfaces.
Scikit-HEP incorporates
HEP techniques in Pythonic
idioms, uproot provides
access to ROOT data as
Numpy and Pandas
abstractions, and OAMap
compiles object-centric
user code into fast array
operations.

Bridging to Big Data
“Big Data” software in industry, such
as the Spark and scientific Python
ecosystems, both complement and
reproduce functionality of HEP
software developed. To provide
more options and reduce
maintenance burdens, DIANA is
building bridges between HEP
software and the Big Data
ecosystems: Spark-ROOT to Spark
and uproot/OAMap to Numpy,
Numba, and Dask.

Improved Performance
To reduce the time to scientific discovery and to enable more in-depth
analyses, we are increasing the rate of access to ROOT data files. This
includes streamlined access to simpler data types (uproot and BulkIO)
and faster compression algorithms (LZ4 and ZSTD). These efforts have
already provided factors-of-several improvements.

Statistical
Techniques

We are developing tools
and methods for statistical
analysis in HEP, including
research for simulator-
based inference (Carl),
machine learning for
particle physics (Scikit-
Optimize), and software for
efficient numerical
computations.

re
la

tiv
e

re
ad

 ra
te

traditional ROOT (GetEntry) uproot in Python BulkIO in ROOT

3×

30×
0

0.2

0.4

0.6

0.8

1
(uncompressed data)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

tw

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d
im

e
n
si

o
n
le

ss
 r

e
g
o
lit

h
 t

h
ic

kn
e
ss

,
r

log growth

d/w = 10

d/w = 1

d/w = 0.1

d/w = 0

10−4 10−3 10−2

1/τ

10−4

10−3

10−2

E
ff

e
ct

iv
e
 w

e
a
th

e
ri

n
g
 r

a
te

0.8< Fr ≤ 1
0.6< Fr ≤ 0.8
0.4< Fr ≤ 0.6
0.2< Fr ≤ 0.4
0≤ Fr ≤ 0.2

Predicted weathering rate =

d' = 0.1 d' = 10 d' = 1,000

w
'=

 4
0

w
'=

 0
.4

w
'=

 4
M

O
R

E
 E

FF
IC

IE
N

T
 W

E
A

T
H

E
R

IN
G

MORE FREQUENT DISTURBANCE

0.0 0.1 0.2 0.3 0.4 0.5

Mean slope gradient

100

101

102

103

104

D
im

e
n
si

o
n
le

ss
 d

if
fu

si
v
it

y
,
D

0 e

Mean height > 4 cells

Mean height <= 4 cells

A Landlab-built cellular automaton model of hillslope evolution
Gregory E. Tucker1,2, Scott W. McCoy3, Daniel E.J. Hobley4

1 - CIRES and Department of Geological Sciences, University of Colorado, Boulder
2 - Community Surface Dynamics Modeling System (CSDMS)

3 - Department of Geological Sciences and Engineering, University of Nevada, Reno
 4 - School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK

Distance along profile (m)

0

50

100

H
ei

gh
t a

bo
ve

 v
al

le
y

(m
)

Distance along profile (m)

0

50

100

H
ei

gh
t a

bo
ve

 v
al

le
y

(m
)

Distance along profile (m)

0

50

100

H
ei

gh
t a

bo
ve

 v
al

le
y

(m
)

1750

1800

1850

1900

1950

E
le

va
tio

n
(m

)

300 m

1000 m

1200

1550

1900

2250

2600

E
le

va
tio

n
(m

)

500 m

100

150

200

250

300

E
le

va
tio

n
(m

)

(a) Soil-mantled, convex-upward slope (b)

(c) Quasi-planar, rocky slope (d)

(e) Cliff-rampart slope (f)

0 50 100 150 200 250 300

0 50 100 150 200 250 300

0 50 100 150 200 250 300

(a) (b)

(c) (d)

(b)(a)

(c) (d)

(e) (f)

FLUID

MOVING PARTICLE
(arrow = direction)

RESTING PARTICLE

ROCK

1/2

1/2

FLUID

MOVING PARTICLE
(arrow = direction)

RESTING PARTICLE

(any) (any)

(any) (any) (any) (any)

(any) (any) (any) (any)

WEATHERING

DISTURBANCE

d = 0.001 yr-1 d = 0.01 yr-1 d = 0.1 yr-1

τ=
 1

00
 y

r
τ=

 1
0,

00
0

yr
τ=

 1
,0

00
 y

r
FA

ST
E

R
 B

A
SE

L
E

V
E

L
FA

L
L

MORE FREQUENT DISTURBANCE

d' = 0.1 d' = 1

d' = 1

d' = 10

d' = 10

d' = 10

d' = 100

d' = 100

d' = 1000

10 2 10 1 100 101 102

Dimensionless disturbance rate, d0

101

M
e
a
n
 h

e
ig

h
t,

h

= 58

= 103

= 183

= 325

= 579

10 1 100 101 102 103

Dimensionless disturbance rate, d '

0.2

0.4

0.6

0.8

1.0

Fr
a
ct

io
n
a
l
re

g
o
lit

h
 c

o
v
e
r,

F
r

100 101

Dimensionless weathering rate, w '

0.0

0.2

0.4

0.6

0.8

1.0

10 1 100 101 102 103

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
e
a
n
 g

ra
d
ie

n
t

w' = 0.4

w' = 1.265

w' = 4

w' = 12.65

w' = 40

(c)

(a)

100 101

0.0

0.2

0.4

0.6

0.8

1.0

1.2 d ' = 0.1

d ' = 1

d ' = 10

d ' = 100

d ' = 1, 000

(d)

(b)

(a)

(b)

(a) d' = 0.1, w' = 1 (b) d' = 1, w' = 1

(c) d' = 0.1, w' = 0.1 (d) d' = 1, w' = 0.1

Abstract: This poster describes and explores a new
continuous-time stochastic cellular automaton
model of hillslope evolution. The software was
written using Landlab, a Python package for rapidly
creating and modifying 2D numerical models of
various sorts. The Grain Hill model provides a
computational framework with which to study
slope forms that arise from stochastic disturbance
and rock weathering events. The model can
reproduce a range of common slope forms, from
fully soil mantled to rocky or partially mantled, and
from convex-upward to planar shapes. With the
addition of a rule for large blocks, the model
captures the morphology of hogbacks, scarps, and
similar features. Model parameters have a direct
link with corresponding parameters in continuum
theory, and can reproduce observed slope forms at
the correct scale.

Landlab is a Python package that supports
building and exploring 2D grid-based
computational models. Key capabilities
include:

• Set up a structured or unstructured grid
with just a few lines of code

• Use, create, and/or combine standardized
components that encapsulate numerical
simulations of individual processes

For more about Landlab see:

http://landlab.github.io

We seek to explain the form and evolution
of rocky hillslopes like these:

Common slope forms include parabolic,
planar, and cliff-rampart:

We start with a lattice-grain cellular model
(Tucker et al., 2016):

Transition rules are used to represent
gravity ...

... and frictional collisions:

Example of granular dynamics simulation:
emptying of a silo

For the Grain Hill mode, we add rules
for periodic soil disturbance and
soil formation by weathering

When the hill is 100% soil, the height
and form depend on the ratio of
disturbance frequency to uplift rate

We can interrogate the scaling of height
and effective diffusivity

When rock is present, behavior ranges
from transport- to weathering-limited

Transport- vs. weathering-limited behavior
is reflected in scaling of gradient and
fraction soil (regolith) cover

Model captures influence of fractional soil
cover on average weathering rate ...

... but diverges
from standard
assumption
rate ~ exp(-r)

What about cliff-rampart morphology? With "collapse rule": quasi-steady forms ...

 ... and transient relaxation:

Adding a rule for "blocks" allows us
to capture mesas, hogbacks, and
rocky ridges

With the right parameter mapping, model
captures specific case studies, such as
the convex-up slope in panel 3a ...

 ... and the planar profile in panel 3b:

ACKNOWLEDGMENTS:

Landlab was suported by a SI2-SSI award ACI-1450409. Hillslope evolution
research was supported by EAR-1349390. Additional support was provided
by the Community Surface Dynamics Modeling System (CSDMS), EAR-1226297.

REFERENCES:

Hobley, D. E., Adams, J. M., Nudurupati, S. S., Hutton, E. W., Gasparini, N. M.,
Istanbulluoglu, E., & Tucker, G. E. (2017) Creative computing with Landlab:
an open-source toolkit for building, coupling, and exploring two-dimensional
numerical models of Earth-surface dynamics.
Earth Surface Dynamics. doi:10.5194/esurf-5-21-2017.

Tucker, G.E., Hobley, D.E.J., Hutton, E., Gasparini, N.M., Istanbulluoglu, E.,
Adams, J.M., and Nudurupati, S.S. (2016) CellLab-CTS 2015: Continuous-time
stochastic cellular automaton modeling using Landlab.
Geoscientific Model Development., v. 9, p. 823-839, doi:10.5194/gmd-9-823-2016.

Tucker, G.E., McCoy, S.W., & Hobley, D.E.J. (2018) A lattice grain model of
hillslope evolution. Earth Surface Dynamics Discussions. doi:10.5194/esurf-2018-4.

a python tookit for modeling earth-surface processes

Solving Polynomial Systems with PHCpack and phcpy

PHCpack is software for Polynomial Homotopy Continuation

phcpy is a new Python package, available at www.phcpack.org

use case from the phcpy tutorial:

reproduces J. Mech. Design paper

Jan Verschelde (UIC) NSF ACI 1440534 SI2 PI meeting 2018 1 / 1

CRESCAT
A Computational Research Environment for Scientific Collaboration on Ancient Topics

PI: David Schloen, University of Chicago

Goals 1. Acquisition 2. Integration 3. Analysis

4. Publication 5. Archiving

• Support all 5 stages of
data for multi-disciplinary
collaborative research

• Automate data transfers
and transformations from
one stage to the next via
high-level GUI

• Accommodate hetero-
geneity of data sources,
types, and schemas while
preserving the original
ontologies

• Seamless scalability for
data management and
algorithmic analyses

• Ensure sustainability of
software maintenance and
technical support

• Test and document with
complex use cases from

• External curated data
repositories via live links
using their Web APIs

• Instruments and data
files with support for
many data types and file
formats (2D images, 3D
models, audio, video,
geospatial, etc.)

• Manual entry with offline
mode for field input and
automated syncing of
data when back online

• Ontology-agnostic data
warehouse stores both
data and the ontologies
inherent in the data

• XQuery DBMS optimized
for hierarchies of atomic
keyed data objects
representing spatial,
temporal, linguistic, and
taxonomic relationships

• Automatic parsing of
source data to populate
the integrated warehouse

• Complex queries use
hierarchical taxonomies
with semantic inheritance

• Statistical analysis and
visualization via tightly
integrated R server with
data-aware console

• Geospatial mapping and
analysis via ArcGIS Online
and ESRI components

Ancient Greek economy
via network analysis of
thousands of coin hoards

• REST API exposes
published data as XML
with XSLT stylesheets to
render it as JSON/HTML

• Sample Web apps
provided for various
research domains, to be
customized as needed

• Secure, password-
protected data controlled
and published by owners

• OWL-RDF ontology
specification documents
the top-level (upper)
ontology underlying the
data warehouse

• Can export RDF triples
conformant to the OWL
ontology, preserving all
distinctions and relation-
ships in the data, for use
in other graph databases

❖ Archaeology
❖ Paleontology
❖ Historical linguistics
❖ Ancient economics
❖ Population genetics
❖ Paleocliimatology

etc. Funded by NSF SI2-SSI award 1450455

Example Use Case

SI2-SSE:	Scaling	Up	Science	with	the	
Cooperative	Computing	Tools	

Douglas	Thain,	University	of	Notre	Dame	

 { "command" : "mysim.exe –p " + x*2 +
 " input.txt > output." + x + " .txt",
 "outputs" : ["output" + x + ".txt"],
 "inputs" : ["input.dat", "mysim.exe"]
} for x in [range(1,100)]

{ "command" :
 "mysim.exe –p " + x*2 +
 " input.txt > output." + x + " .txt",
 "outputs" : ["output" + x + ".txt"],
 "inputs" : [
 "input.dat",
 "mysim.exe"
]
} [for x in range(1,100)]

Portable Workflow
Expression

Experiment
Management

Scalability
and Robustness

Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=ucgs20

Journal of Computational and Graphical Statistics

ISSN: 1061-8600 (Print) 1537-2715 (Online) Journal homepage: http://www.tandfonline.com/loi/ucgs20

Programming With Models: Writing Statistical
Algorithms for General Model Structures With
NIMBLE

Perry de Valpine, Daniel Turek, Christopher J. Paciorek, Clifford Anderson-
Bergman, Duncan Temple Lang & Rastislav Bodik

To cite this article: Perry de Valpine, Daniel Turek, Christopher J. Paciorek, Clifford Anderson-
Bergman, Duncan Temple Lang & Rastislav Bodik (2017) Programming With Models: Writing
Statistical Algorithms for General Model Structures With NIMBLE, Journal of Computational and
Graphical Statistics, 26:2, 403-413, DOI: 10.1080/10618600.2016.1172487

To link to this article: https://doi.org/10.1080/10618600.2016.1172487

View supplementary material Accepted author version posted online: 06
Apr 2016.
Published online: 24 Apr 2017.

Submit your article to this journal Article views: 457

View related articles View Crossmark data

Citing articles: 5 View citing articles

C++	Compiler

Eigen Rmath CppAD

igraph

NIMBLE	C++	library

NIMBLE	(Models)

NIMBLE	Compiler	/	R

NIMBLE	(Algorithm	Library) NIMBLE	(User	Algorithms)

R	packages

Generated	C++

R

C++

Perry de Valpine (PI); UC Berkeley
Christopher Paciorek (co-PI); UC Berkeley
Daniel Turek; Williams College
Nicholas Michaud; UC Berkeley
Duncan Temple Lang; UC Davis

NIMBLE:	Programmable	Statistical	Modeling	for	Hierarchical/	Graphical	Models	

1.	More	and	better	MCMC
• Many	different	samplers
• Better	adaptive	algorithms
2.	Numerical	integration
• Laplace	approximation
• Adaptive	Gaussian	quadrature
• Hidden	Markov	models

3.	Maximum	likelihood	estimation
• Monte	Carlo	EM
• Data	cloning
• Monte	Carlo	Newton-Raphson

4.	Sequential	Monte	Carlo
• Auxiliary	Particle	Filter
• Ensemble	Kalman Filter	
• Iterated	Particle	Filter

5.	Normalizing	constants
• Importance	sampling
• Bridge	sampling
• Others

6.	Model	assessment
• Bootstrapping
• Calibrated	posterior	predictive	

checks	
• Cross-validation
• Posterior	re-weighting

7.	Idea	cominbations
• PF	+	MCMC
• MCMC	+	Laplace/quadrature

https://r-nimble.org
NSF ACI-1550488, DBI-1147230 (completed), DMS-1622444

1. Domain-specific	language	(DSL)	for	statistical	models
• We	adopt	and	extend	the	widely-used	BUGS	language

2. Domain-specific	language	embedded	within	R	for	model-generic	
algorithms

3. Code-generator	(compiler)	that	generates	C++	from	the	model	and	
algorithms	DSLs.
• C++	objects	are	managed	from	R	by	dynamically-generated	

interface	classes
4. Algorithm	library	(MCMC,	SMC,	etc.)

Core	Team

NIMBLE	ComponentsWhat	do	we	want	to	do	with	hierarchical	models?	

SI2-SSE: High Performance Low Rank Approximation for Scalable Data Analytics
R. Kannan (ORNL), G. Ballard (WFU), B. Drake (GTRI), and H. Park (GAtech) https://github.com/ramkikannan/nmflibrary

Constrained Low Rank Approximation (CLRA) for

Modeling Key Data Analytics problems of clustering,

topic modeling, community detection, and hybrid

clustering

Our current focus: Nonnegative Matrix/Tensor

Factorization (NMF and NTF) and other Variants (e.g.

Sparse NMF, SymNMF, and JointNMF)

Why CLRA such as NMF and NTF?

Utilize advances in numerical linear algebra

algorithms and software, Behavior of algorithm

easier to understand and analyze, Facilitates design

of MPI based algorithms for scalable solutions

PPoPP’16, TKDE’18, PPoPP’18, IPDPS’18, JGO’18

k WTW

k

(W0)0

(W0)1

(W1)0

(W1)1

(W2)0

(W2)1	 		

m

W0

W1

W2

m/p

A00 A01

A10 A11

A20 A21

(H0)0 (H0)1 (H0)2 (H1)0 (H1)1 (H1)2

n/pc

n

n/p

H0 H1

m/pr

kH

W
(WTA)0 (WTA)1

n/p

n

MPI_REDUCE_SCATTER	
on	Processor	Columns
MPI_ALLREDUCE	on
all	Processors	
MPI_ALLGATHER	
on	Processor	Rows

(W0)0T(W0)0

(W0)1T(W0)1

(W1)0T(W1)0

(W1)1T(W1)1

(W2)0T(W2)0

(W2)1T(W2)1

WTA

W0TA00 W0TA00

W1TA10 W1TA11

W2TA20 W2TA20

Fast Alternating Updating NMF/NTF (FAUN) Framework:

≈ Rank 1
Tensor

+

+

Rank 1
Tensor

…

… Rank 1
Tensor

Sum of ‘r’ Rank-1 Tensors

r

r

r

!"

!#

!$

!# !"

!$

+

+

Low
Rank
Factors

13

MU HALS ABPP
0

20

40

T
im

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather

Gram LUC MM

(a) Time

0 500 1,000 1,500
0.8

1

1.2

Time (s)

R
el

at
iv

e
E

rr
or

MU
HALS
ABPP

(b) Error

Fig. 8: NMF comparison on webbase-2001 for k=50 on 1536
processors.

7 Conclusion

In this paper, we propose a high-performance distributed-memory
parallel framework for NMF algorithms that iteratively update
the low rank factors in an alternating fashion. Our parallelization
scheme is designed to avoid communication overheads and scales
well to over 1500 cores. The framework is flexible, being (a)
expressive enough to leverage many di↵erent NMF algorithms
and (b) e�cient for both sparse and dense matrices of sizes
that span from a few hundreds to hundreds of millions. Our
open-source software implementation is available for download.

For solving data mining problems at today’s scale, parallel
computation and distributed-memory systems are becoming
prerequisites. We argue in this paper that by using techniques
from high-performance computing, the computations for NMF
can be performed very e�ciently. Our framework allows for the
HPC techniques (e�cient matrix multiplication) to be separated
from the data mining techniques (choice of NMF algorithm), and
we compare data mining techniques at large scale, in terms of
data sizes and number of processors. One conclusion we draw
from the empirical and theoretical observations is that the extra
per-iteration cost of ABPP over alternatives like MU and HALS

decreases as the number of processors p increases, making ABPP

more advantageous in terms of both quality and performance at
larger scales. By reporting time breakdowns that separate local
computation from interprocessor communication, we also see
that our parallelization scheme prevents communication from
bottlenecking the overall computation; our comparison with a
naive approach shows that communication can easily dominate
the running time of each iteration.

In future work, we would like to extend MPI-FAUN algo-
rithm to dense and sparse tensors, computing the CANDE-
COMP/PARAFAC decomposition in parallel with non-negativity
constraints on the factor matrices. We plan on extending our soft-
ware to include more NMF algorithms that fit the AU-NMF frame-
work; these can be used for both matrices and tensors. We would
also like to explore more intelligent distributions of sparse matri-
ces: while our 2D distribution is based on evenly dividing rows and
columns, it does not necessarily load balance the nonzeros of the
matrix, which can lead to load imbalance in matrix multiplications.
We are interested in using graph and hypergraph partitioning
techniques to load balance the memory and computation while at
the same time reducing communication costs as much as possible.

8 Acknowledgements
This material is based upon work supported by the National Science
Foundation Graduate Research Fellowship under Grant No. OAC-
1642385. This manuscript has been co-authored by UT-Battelle, LLC
under Contract No. DE-AC05-00OR22725 with the U.S. Department
of Energy. This project was partially funded by the Laboratory
Director’s Research and Development fund. This research used
resources of the Oak Ridge Leadership Computing Facility at the
Oak Ridge National Laboratory, which is supported by the O�ce of
Science of the U.S. Department of Energy.

Also, partial funding for this work was provided by AFOSR
Grant FA9550-13-1-0100, National Science Foundation (NSF)
grants IIS-1348152, ACI-1338745, and ACI-1642385, Defense
Advanced Research Projects Agency (DARPA) XDATA program
grant FA8750-12-2-0309. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the USDOE, NERSC,
AFOSR, NSF or DARPA.

References
[1] D. Seung and L. Lee, “Algorithms for non-negative matrix factorization,”

NIPS, vol. 13, pp. 556–562, 2001.
[2] V. P. Pauca, F. Shahnaz, M. W. Berry, and R. J. Plemmons, “Text mining

using nonnegative matrix factorizations,” in Proceedings of SDM, 2004.
[3] P. O. Hoyer, “Non-negative matrix factorization with sparseness

constraints,” JMLR, vol. 5, pp. 1457–1469, 2004. [Online]. Available:
www.jmlr.org/papers/volume5/hoyer04a/hoyer04a.pdf

[4] R. Fujimoto, A. Guin, M. Hunter, H. Park, G. Kanitkar,
R. Kannan, M. Milholen, S. Neal, and P. Pecher, “A dynamic
data driven application system for vehicle tracking,” Procedia
Computer Science, vol. 29, pp. 1203–1215, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.procs.2014.05.108

[5] T. Bouwmans, A. Sobral, S. Javed, S. K. Jung, and E.-H. Zahzah,
“Decomposition into low-rank plus additive matrices for back-
ground/foreground separation: A review for a comparative evaluation
with a large-scale dataset,” arXiv preprint arXiv:1511.01245, 2015.

[6] H. Kim and H. Park, “Sparse non-negative matrix factorizations
via alternating non-negativity-constrained least squares for microarray
data analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.
[Online]. Available: http://dx.doi.org/10.1093/bioinformatics/btm134

[7] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative
matrix and tensor factorizations: applications to exploratory multi-way
data analysis and blind source separation. Wiley, 2009.

[8] D. Kuang, C. Ding, and H. Park, “Symmetric nonnegative
matrix factorization for graph clustering,” in Proceedings
of SDM, 2012, pp. 106–117. [Online]. Available:
http://epubs.siam.org/doi/pdf/10.1137/1.9781611972825.10

[9] D. Kuang, S. Yun, and H. Park, “SymNMF: nonnegative low-rank
approximation of a similarity matrix for graph clustering,” Journal
of Global Optimization, pp. 1–30, 2013. [Online]. Available:
http://dx.doi.org/10.1007/s10898-014-0247-2

[10] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative matrix and
tensor factorizations: A unified view based on block coordinate descent
framework,” Journal of Global Optimization, vol. 58, no. 2, pp. 285–319,
2014. [Online]. Available: http://dx.doi.org/10.1007/s10898-013-0035-4

[11] N.-D. Ho, P. V. Dooren, and V. D. Blondel, “Descent methods for
nonnegative matrix factorization,” CoRR, vol. abs/0801.3199, 2008.

[12] J. Kim and H. Park, “Fast nonnegative matrix factorization: An
active-set-like method and comparisons,” SIAM Journal on Scientific
Computing, vol. 33, no. 6, pp. 3261–3281, 2011. [Online]. Available:
http://dx.doi.org/10.1137/110821172

[13] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis, “Large-scale
matrix factorization with distributed stochastic gradient descent,” in
Proceedings of the KDD. ACM, 2011, pp. 69–77. [Online]. Available:
http://dx.doi.org/10.1145/2020408.2020426

[14] Y.-X. Wang and Y.-J. Zhang, “Nonnegative matrix factorization: A
comprehensive review,” TKDE, vol. 25, no. 6, pp. 1336–1353, June
2013. [Online]. Available: http://dx.doi.org/10.1109/TKDE.2012.51

[15] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM Journal on Imaging Sciences,
vol. 6, no. 3, pp. 1758–1789, 2013.

[16] K. Huang, N. D. Sidiropoulos, and A. P. Liavas, “A flexible and e�cient
algorithmic framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5052–5065,
Oct 2016.

NMF on118 million Web-graph

Titan – Dense Matrix, Low Rank 50,
100 Iterations, 12650 Nodes,

202500 Cores,
11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,

11

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

All-Reduce Reduce-Scatter All-Gather Gram LUC MM

16 96 384 864 1536

(a) Sparse Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

3

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(b) Dense Synthetic

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

5

10

Number of Processes (p)

Ti
m

e
(s

ec
on

ds
)

16 96 384 864 1536

(c) Sparse Real World (webbase-1M)

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve
M

U
H

A
LS

A
B

PP
N

ai
ve

M
U

H
A

LS
A

B
PP

N
ai

ve

0

1

2

Number of Processes (p)
Ti

m
e

(s
ec

on
ds

)
16 96 384 864 1536

(d) Dense Real World (Video)

Fig. 5: Per-iteration times with k=50, varying p (strong scaling).

each iteration. Our conclusion is that as we scale up p, this
tradeo↵ is further relaxed so that ABPP becomes more and more
advantageous for both quality and performance.

6.3.3 Scaling k
Figure 6 presents an experiment scaling up the low rank value k
from 10 to 50 with each of the four data sets. In this experiment,
for each data set and algorithm, the problem size is fixed and the
number of processors is fixed to p= 864. As in Section 6.3.2, we
report the average per-iteration times.

We highlight two observations from these experiments:
1) Naive is plagued by communication time that increases

linearly with k;
2) ABPP’s time increases more quickly with k than those of MU

or HALS;
6.3.3.1 Observation 1: We see from the synthetic data sets

(Figures 6a and 6b) that the overall time of Naive increases more
rapidly with k than any other algorithm and that the increase
in time is due mainly to communication (All-Gather). Table 3
predicts that Naive communication volume scales linearly with
k, and we see that in practice the prediction is almost perfect with
the synthetic problems. This confirms that the communication
is dominated by bandwidth costs and not latency costs (which
are constant with respect to k). We note that the communication
cost of MPI-FAUN scales like

p
k, which is why we don’t see as

dramatic an increase in communication time for MU, HALS, or
ABPP in Figure 6.

6.3.3.2 Observation 2: Focusing attention on time spent
in LUC computations, we can compare how MU, HALS, and
ABPP scale di↵erently with k. We see a more rapid increase
of LUC time for ABPP than MU or HALS; this is expected
because the LUC computations unique to ABPP require between
O(k3) and O(k4) operations (depending on the data) while the
unique LUC computations for MU and HALS are O(k2), with
all other parameters fixed. Thus, the extra per-iteration cost of
ABPP increases with k, so the advantage of ABPP of better
error reduction must also increase with k for it to remain superior
at large values of k. We also note that although the number of
operations within MM grows linearly with k, we do not observe
much increase in time from k = 10 to k = 50; this is due to the
improved e�ciency of local MM for larger values of k.

6.3.4 Varying Processor Grid

In this section we demonstrate the e↵ect of the dimensions of the
processor grid on per-iteration performance. For a fixed total num-
ber of processors p, the communication cost of Algorithm 3 varies
with the choice of pr and pc. To minimize the amount of data
communicated, the theoretical analysis suggests that the processor
grid should be chosen to make the sizes of the local data matrix as
square as possible. This implies that if m/p>n, pr= p and pc=1 is
the optimal choice (a 1D processor grid); likewise if n/p>m then
a 1D processor grid with pr = 1 and pc = p is the optimal choice.
Otherwise, a 2D processor grid minimizes communication with
pr⇡
p

mp/n and pc⇡
p

np/m (subject to integrality and pr pc= p).
Figure 7 presents a benchmark of ABPP for the Sparse

Synthetic data set for fixed values of p and k. We vary the
processor grid dimensions from both 1D grids to the 2D grid
that matches the theoretical optimum exactly. Because the sizes
of the Sparse Synthetic matrix are 172,800 ⇥ 115,200 and the
number of processors is 1536, the theoretically optimal grid is
pr =
p

mp/n= 48 and pc =
p

np/m= 32. The experimental results
confirm that this processor grid is optimal, and we see that the
time spent communicating increases as the processor grid deviates
from the optimum, with the 1D grids performing the worst.

6.3.5 Scaling up to Very Large Sparse Datasets

In this section, we test MPI-FAUN by scaling up the problem
size. While we’ve used webbase-1M in previous experiments, we
consider webbase-2001 in this section as it is the largest sparse
data in University of Florida Sparse Matrix Collection [40]. The
former dataset has about 1 million nodes and 3 million edges,

Sparse Webbase – 1M Vertex Dense real world-video

https://github.com/ramkikannan/nmflibrary

GraviT Distributed Ray Tracing Framework
ACI-1339863 (TACC) ACI-1339840 (Oregon) ACI-1339881 (Utah)

Bring photo-quality rendering to your large-data visualizations
through ray tracing, and now integrated into the SI2 yt project!

OpenGL version – flat lighting, constant shadows, limited depth perception Embree RT version with ‘glass’ planes –
integrated, realistic material behavior

gvt
+

PIs: Paul Navrátil (TACC), Hank Childs (UO), Chuck Hansen (UU), Allen Malony (ParaTools)

Paul Bauman

SI2-SSE: Collaborative Research: Extending the
Practicality and Scalability of LibMesh-Based

Unstructured, Adaptive Finite Element Computations

A MACHINE LEARNING GATEWAY FOR
SCIENTIFIC WORKFLOW DESIGN

Akos Ledeczi (PI) · Brian Broll · Tamas Budavari · Peter Volgyesi

DeepForge is an open source platform for deep learning designed for promoting
reproducibility, simplicity and rapid development within diverse scientific domains.

· web application
· model-based design
· online collaboration
· project history
· job management

WEBGME

TENSORFLOW

· DNN architectures
· custom workflows
· alternative engines:
 CNTK, Theano

NSF SI2-SSE #1740151

Why you must visit our poster!

• BLIS: Framework for
Rapid Instantiation of
BLAS-like functionality

• libflame: LAPACK
functionality

• TBLIS: A C++ tensor
contraction library

• Professional development
for scientific software
scientists

• Massive outreach through
Massive Open Online
Courses. (145,000
participants to date)

• Cultivation of external
contributors

SHPCThe Science of
High-Performance
Computing Group

A modern dense linear algebra
software stack

Effective outreach

Michelle Borkin, PI
Northeastern University
@michelle_borkin

Alyssa Goodman, PI
Harvard University
@AlyssaAGoodman

Thomas Robitaille
Lead Architect
@astrofrog

@glueviz
Linked-View  

Exploratory Visualization  
of High-Dimensional Data,  

for Everyone
Alyssa Goodman (PI, Harvard) 
Michellle Borkin (PI, Northeastern)  
Thomas Robitaille (Lead Architect)

glueviz.org github.com/glue-viz

The glue project was founded in 2012, with funding from
NASA’s James Webb Space Telescope (JWST) project. NASA
contracts continue to support development of JWST-related
(Astronomy) functionality.

Beginning in 2017, glue has also been funded by the National
Science Foundation, under SI2-SSE 1739657/1740229:
Collaborative Research: A sustainable future for the glue multi-
dimensional linked data visualization package. The goal of the
NSF SSE funding is to expand glue’s functionality into domains
beyond its traditional strengths in Astronomy and Medicine, by
broadening both its user and developer communities.

All glue code is Open Source, at github.com/glue-viz

“InfoVis” & “SciVis” TOGETHER GIS compatible

Medical Imaging

User-defined “Dimensions”

1D, 2D, 3D All linked live

New! Jupyter Lab functionality

Want to plug-in your
project or tool?  

Consider joining us for
glue-con,  

right after JupyterCon,  
August 27-29, 2018,  

at Harvard.

WorldWide
Telescope

Plugin

glue’s modular design

glueviz.slack.com

projects.iq.harvard.edu/gluecon

Massively Parallel Solvers for Computational Fluid
Dynamics on Block Structured Cartesian Grids

Jaber Hasbestan, Scott Aiton, Brenton Peck, Donna Calhoun, Inanc Senocak, Grady Wright*; https://github.com/GEM3D

Refinement level 10 12 14 16

Red-black tree 3.3 21.14 69.75 145.87

Z-curve enhanced hash function 3.7 26.85 87.85 180.01

C++ STL default hash function 4.89 39.95 138.19 272.97

Block Structured Cartesian AMR

Highly scalable red-black binarized-
octree for generating and managing
the adaptively refined grids

(
r2p = f on ⌦

n ·rp = 0 on @⌦
<latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA=">AAAC+3icbVHLjtMwFHXCq4RXOyzZWFQgFqhKR4MAIaSR2MyOQZoyI9WlcpybxBrHiewbhsqEr2GF2PIxbPkSnDZItDNXsnx0fI/v4yS1khbj+HcQXrt+4+atwe3ozt179x8MR3sfbdUYATNRqcqcJdyCkhpmKFHBWW2Al4mC0+T8Xfd++hmMlZU+wVUNi5LnWmZScPTUcviVJZBL7YT/w7YR0zxR/NM+relbmtGnlCF8QVdp9qal7H0JOaeMRazkWCSZ0y0TaYV0I1uL4l1RzQ1Krnp1xECn/6oth+N4Eq+DXgbTHoxJH8fLUVCwtBJNCRqF4tbOp3GNC9eVEAp8/42FmotznsPcQ81LsAu3XlNLn3gmpVll/NFI1+z/CsdLa1dl4jO7+ezuW0c+9zcW5VUp8wazVwsndd0gaLGplzWKYkW71dNUGhCoVh5wYaRvmYqCGy7QGxQxC949nWPh1vu7kCkWrTuYvJB6a7DNOJiobZarvPKf+t6upqVoI+8vXGABlYHS9XfrTnoQMcPzHFIj8wK9N9NdJy6D2f7k9WT64WB8eNSbNCCPyGPyjEzJS3JIjsgxmRFB/gSDYBTshd/C7+GP8OcmNQx6zUOyFeGvvygT80w=</latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA=">AAAC+3icbVHLjtMwFHXCq4RXOyzZWFQgFqhKR4MAIaSR2MyOQZoyI9WlcpybxBrHiewbhsqEr2GF2PIxbPkSnDZItDNXsnx0fI/v4yS1khbj+HcQXrt+4+atwe3ozt179x8MR3sfbdUYATNRqcqcJdyCkhpmKFHBWW2Al4mC0+T8Xfd++hmMlZU+wVUNi5LnWmZScPTUcviVJZBL7YT/w7YR0zxR/NM+relbmtGnlCF8QVdp9qal7H0JOaeMRazkWCSZ0y0TaYV0I1uL4l1RzQ1Krnp1xECn/6oth+N4Eq+DXgbTHoxJH8fLUVCwtBJNCRqF4tbOp3GNC9eVEAp8/42FmotznsPcQ81LsAu3XlNLn3gmpVll/NFI1+z/CsdLa1dl4jO7+ezuW0c+9zcW5VUp8wazVwsndd0gaLGplzWKYkW71dNUGhCoVh5wYaRvmYqCGy7QGxQxC949nWPh1vu7kCkWrTuYvJB6a7DNOJiobZarvPKf+t6upqVoI+8vXGABlYHS9XfrTnoQMcPzHFIj8wK9N9NdJy6D2f7k9WT64WB8eNSbNCCPyGPyjEzJS3JIjsgxmRFB/gSDYBTshd/C7+GP8OcmNQx6zUOyFeGvvygT80w=</latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA=">AAAC+3icbVHLjtMwFHXCq4RXOyzZWFQgFqhKR4MAIaSR2MyOQZoyI9WlcpybxBrHiewbhsqEr2GF2PIxbPkSnDZItDNXsnx0fI/v4yS1khbj+HcQXrt+4+atwe3ozt179x8MR3sfbdUYATNRqcqcJdyCkhpmKFHBWW2Al4mC0+T8Xfd++hmMlZU+wVUNi5LnWmZScPTUcviVJZBL7YT/w7YR0zxR/NM+relbmtGnlCF8QVdp9qal7H0JOaeMRazkWCSZ0y0TaYV0I1uL4l1RzQ1Krnp1xECn/6oth+N4Eq+DXgbTHoxJH8fLUVCwtBJNCRqF4tbOp3GNC9eVEAp8/42FmotznsPcQ81LsAu3XlNLn3gmpVll/NFI1+z/CsdLa1dl4jO7+ezuW0c+9zcW5VUp8wazVwsndd0gaLGplzWKYkW71dNUGhCoVh5wYaRvmYqCGy7QGxQxC949nWPh1vu7kCkWrTuYvJB6a7DNOJiobZarvPKf+t6upqVoI+8vXGABlYHS9XfrTnoQMcPzHFIj8wK9N9NdJy6D2f7k9WT64WB8eNSbNCCPyGPyjEzJS3JIjsgxmRFB/gSDYBTshd/C7+GP8OcmNQx6zUOyFeGvvygT80w=</latexit><latexit sha1_base64="pix8Ri1OruXbHLn2o9H6Ygm6CJA=">AAAC+3icbVHLjtMwFHXCq4RXOyzZWFQgFqhKR4MAIaSR2MyOQZoyI9WlcpybxBrHiewbhsqEr2GF2PIxbPkSnDZItDNXsnx0fI/v4yS1khbj+HcQXrt+4+atwe3ozt179x8MR3sfbdUYATNRqcqcJdyCkhpmKFHBWW2Al4mC0+T8Xfd++hmMlZU+wVUNi5LnWmZScPTUcviVJZBL7YT/w7YR0zxR/NM+relbmtGnlCF8QVdp9qal7H0JOaeMRazkWCSZ0y0TaYV0I1uL4l1RzQ1Krnp1xECn/6oth+N4Eq+DXgbTHoxJH8fLUVCwtBJNCRqF4tbOp3GNC9eVEAp8/42FmotznsPcQ81LsAu3XlNLn3gmpVll/NFI1+z/CsdLa1dl4jO7+ezuW0c+9zcW5VUp8wazVwsndd0gaLGplzWKYkW71dNUGhCoVh5wYaRvmYqCGy7QGxQxC949nWPh1vu7kCkWrTuYvJB6a7DNOJiobZarvPKf+t6upqVoI+8vXGABlYHS9XfrTnoQMcPzHFIj8wK9N9NdJy6D2f7k9WT64WB8eNSbNCCPyGPyjEzJS3JIjsgxmRFB/gSDYBTshd/C7+GP8OcmNQx6zUOyFeGvvygT80w=</latexit>

Solve: for p given f,

where n is the unit outward normal vector to ⌦.
<latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE=">AAACwHicbVFNb9NAEN2Yr2K+UjhyWZEgcUCWXRVRbkW9cKNIDa0UR9F6PbZX3Q+zO24Iln8Pv4YriH/DOvGBtJ3LPL2Z2Z03L6ulcBjHf0fBnbv37j/Yexg+evzk6bPx/vOvzjSWw4wbaexFxhxIoWGGAiVc1BaYyiScZ5cnff38CqwTRp/huoaFYqUWheAMPbUcf1xVYIFOU8WwyopWd1MqHMUKaKMFUtPgitmcamMVk/QKOBpL0fiJzwpKNo2W40kcxZugN0EygAkZ4nS5P6rS3PBGgUYumXPzJK5x0TKLgkvowrRxUDN+yUqYe6iZArdoN1o7+tozOS38EoXRSDfs/xMtU86tVeY7e0nueq0n3/qMlbqtZd5gcbRoha4bBM23/xWN7CX396O5sP4Gcu0B41b4lSmvmGUc/ZXD1IG3QJdYtSnCd1yJHKuuPYzeCb0jbCsHM7nLMlka/6jf7XZa8C4MUw0rb5CxoNohd+3ZAMLUsrKE3IqyQu9Nct2Jm2B2EH2Iki8Hk+OjwaQ98pK8Im9IQt6TY/KJnJIZ4eQn+UV+kz/BSSACE3zbtgajYeYF2Yngxz8qs9/U</latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE=">AAACwHicbVFNb9NAEN2Yr2K+UjhyWZEgcUCWXRVRbkW9cKNIDa0UR9F6PbZX3Q+zO24Iln8Pv4YriH/DOvGBtJ3LPL2Z2Z03L6ulcBjHf0fBnbv37j/Yexg+evzk6bPx/vOvzjSWw4wbaexFxhxIoWGGAiVc1BaYyiScZ5cnff38CqwTRp/huoaFYqUWheAMPbUcf1xVYIFOU8WwyopWd1MqHMUKaKMFUtPgitmcamMVk/QKOBpL0fiJzwpKNo2W40kcxZugN0EygAkZ4nS5P6rS3PBGgUYumXPzJK5x0TKLgkvowrRxUDN+yUqYe6iZArdoN1o7+tozOS38EoXRSDfs/xMtU86tVeY7e0nueq0n3/qMlbqtZd5gcbRoha4bBM23/xWN7CX396O5sP4Gcu0B41b4lSmvmGUc/ZXD1IG3QJdYtSnCd1yJHKuuPYzeCb0jbCsHM7nLMlka/6jf7XZa8C4MUw0rb5CxoNohd+3ZAMLUsrKE3IqyQu9Nct2Jm2B2EH2Iki8Hk+OjwaQ98pK8Im9IQt6TY/KJnJIZ4eQn+UV+kz/BSSACE3zbtgajYeYF2Yngxz8qs9/U</latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE=">AAACwHicbVFNb9NAEN2Yr2K+UjhyWZEgcUCWXRVRbkW9cKNIDa0UR9F6PbZX3Q+zO24Iln8Pv4YriH/DOvGBtJ3LPL2Z2Z03L6ulcBjHf0fBnbv37j/Yexg+evzk6bPx/vOvzjSWw4wbaexFxhxIoWGGAiVc1BaYyiScZ5cnff38CqwTRp/huoaFYqUWheAMPbUcf1xVYIFOU8WwyopWd1MqHMUKaKMFUtPgitmcamMVk/QKOBpL0fiJzwpKNo2W40kcxZugN0EygAkZ4nS5P6rS3PBGgUYumXPzJK5x0TKLgkvowrRxUDN+yUqYe6iZArdoN1o7+tozOS38EoXRSDfs/xMtU86tVeY7e0nueq0n3/qMlbqtZd5gcbRoha4bBM23/xWN7CX396O5sP4Gcu0B41b4lSmvmGUc/ZXD1IG3QJdYtSnCd1yJHKuuPYzeCb0jbCsHM7nLMlka/6jf7XZa8C4MUw0rb5CxoNohd+3ZAMLUsrKE3IqyQu9Nct2Jm2B2EH2Iki8Hk+OjwaQ98pK8Im9IQt6TY/KJnJIZ4eQn+UV+kz/BSSACE3zbtgajYeYF2Yngxz8qs9/U</latexit><latexit sha1_base64="L+zLWM1YaBhqQU/zSaP8bYoHtSE=">AAACwHicbVFNb9NAEN2Yr2K+UjhyWZEgcUCWXRVRbkW9cKNIDa0UR9F6PbZX3Q+zO24Iln8Pv4YriH/DOvGBtJ3LPL2Z2Z03L6ulcBjHf0fBnbv37j/Yexg+evzk6bPx/vOvzjSWw4wbaexFxhxIoWGGAiVc1BaYyiScZ5cnff38CqwTRp/huoaFYqUWheAMPbUcf1xVYIFOU8WwyopWd1MqHMUKaKMFUtPgitmcamMVk/QKOBpL0fiJzwpKNo2W40kcxZugN0EygAkZ4nS5P6rS3PBGgUYumXPzJK5x0TKLgkvowrRxUDN+yUqYe6iZArdoN1o7+tozOS38EoXRSDfs/xMtU86tVeY7e0nueq0n3/qMlbqtZd5gcbRoha4bBM23/xWN7CX396O5sP4Gcu0B41b4lSmvmGUc/ZXD1IG3QJdYtSnCd1yJHKuuPYzeCb0jbCsHM7nLMlka/6jf7XZa8C4MUw0rb5CxoNohd+3ZAMLUsrKE3IqyQu9Nct2Jm2B2EH2Iki8Hk+OjwaQ98pK8Im9IQt6TY/KJnJIZ4eQn+UV+kz/BSSACE3zbtgajYeYF2Yngxz8qs9/U</latexit>

ACI-1440638

Automated Detection and Repair of Errors
in Event-Driven Applications

Frank Tip

College of Computer and Information Science, Northeastern University
www.franktip.org

• modern applications rely on event handling for, e.g., user input, network communication

• key operations: register event handlers, emit events, call-back to event handler

• programmer errors are common, and lead to hard-to-debug failures

- e.g., event race errors depending on nondeterministic scheduling of event handlers

• research goal: provide programmers with better tools to detect and repair such errors

- based on static & dynamic program analysis

http://www.franktip.org

Ye Zhao

GeoVisuals Software: Capturing, Managing, and
Utilizing GeoSpatial Multimedia Data for

Collaborative Field Research

OBJECTIVE 01

Water Quality
Sampling Campaign

Collaborative RAPID
BUILDING INFRASTRUCTURE TO PREVENT DISASTERS LIKE HURRICANE MARIA

OBJECTIVE 02

Data
Archive

PR
IV

A
C

Y
PR

O
TE

C
TE

D
IN

FO
R

M
AT

IO
N

PU
B

LI
C

 A
C

C
ES

S
IN

FO
R

M
AT

IO
N

OBJECTIVE 03

Cyberinfrastructure
Advances

Expected
Science Outcomes

Drinking water samples from
public streams

Spatially aggregated
anonymized information of the
impact zone

PRASA Utility, community
operated tank system,
household data

Teacher collection of student
health data (IRB)

Water samples with personal
information

De-identified water samples
that can be geo-located

Population health
researcher user-testing

Water quality professionals
and researchers user
testing

Individual data owners user
testing

Baseline assessment: Population
Health Data, Healthcare Providers
and supporting organizations,
natural system environmental
variables, Public Water System
location and infrastructure status.

Hurricane Maria health and
environmental data from public
data repositories and Luquillo
CZO instruments in El Yunque
National Park

LANDLAB raster model grid
and diverse data formats

Observation Data Model
(ODM2)

DISASTER:
Contamination, drought,
landslides, bio-diversity

DRINKING WATER:
Geographic location and
use data

HUMAN IMPACT:
Spatial distribution of
contamination or drought

PAPI-EX
Performance Application Programming Interface for Extreme-scale Environments

SI2-SSI-1450122

• Performance Measurement Library

• Cross-platform

• Widely used in Supercomputing Environments

• Find Bottlenecks in your code!

• Measure raw performance, architectural e↵ects

(Cache, Branch Predictor, etc.), Power and Energy

• Supports most modern computing hardware

• Companion tools: PAPI-ex, Counter Inspection Toolkit

Jack Dongarra, Heike Jagode, Anthony Danalis

University of Tennessee

Vince Weaver

University of Maine

What is MATPOWER?
• Set of free, open-source, Matlab language tools

• compatible with MATLAB® and GNU Octave
• For steady-state power system simulation and

optimization, including:
• power flow (PF)
• extensible, optimal power flow (OPF)

MATPOWER’s Unique Combination
• free, open-source license (BSD)
• code that is easy to understand, customize
• state-of-the-art, high performance solvers
• ready-to-use realistic data included

MATPOWER boosted to de facto standard
• benchmark platform for power systems research
• educational tool for power systems engineers

and optimization

Project Overview
Expand MATPOWER’s future impact as a successful
research-enabling tool for the problems of the
power systems of the future by providing the project
infrastructure and core software architecture
needed to facilitate ongoing community-supported
growth.

MATPOWER Project Infrastructure
• Transition to fully collaborative open development

paradigm with, public code repository, issue tracker,
user and developer forums, contributor guidelines,
public list of project descriptions

MATPOWER Core Software Architecture
• Redesign core software around a general modular

architecture to enable more flexible user
customization and facilitate significant user
contributions, while retaining and enhancing the
simplicity that makes it attractive in education

Ying Li

CRII: OAC: A Hybrid Finite Element and Molecular
Dynamics Simulation Approach for Modeling
Nanoparticle Transport in Human Vasculature

STAMLA: Scalable Tree Algorithms for Machine Learning Applications

Summary
A software architecture challenge to design a unified set of high performance tree abstractions.

Ordered

Unordered

Ordering

Depth �rst pre-order
Depth �rst post-order
Leaves only

Breadth �rst
Traversal

Dynamic
Level dependent

Static

Arity

Static

Dynamic

Depth

Explicit

Implicit

Representation

NSF-SI2-2018 Meeting - Vincent Reverdy & Robert J. Brunner - May 2018 1

SI2-SSE: C11Tester: Scaling Testing of C/C++11 Atomics
to Real-World Systems
Brian Demsky, University of California, Irvine

C/C++11
Application Code

Compiled code
linked into the

C11Tester Library

Extensible
Plugins

C11Tester
Framework

• Modern programming languages provide atomic
operations

• Atomic operations:
• Make it possible to build faster, more scalable data structures

with stronger guarantees
• Expose developers to complex behaviors that arise from CPU &

compiler optimization
• Are extremely difficult to use correctly

• C11Tester project is building tools to help developers
effectively test code with atomic operations

Bugs

Genapp

GenApp

WillItFit

QuaFit
Others …

U
I –

GU
I –

W
eb

 G
U

I

HP
C
–

Ga
te

w
ay

The computational
code

Bu
ild

Ca
lc

ul
at

e

Si
m

ul
at

e

An
al

yz
e

SC
T

SASSIE

Bringing higher end computational tools to the bench
scientist to accelerate the discovery process.

Current grant coming to a close.

Working on transitioning to Community
efforts and how to coordinate new
efforts going forward.

Several new projects being proposed -- plus
• Networking/workshop grants

• COST action proposal in Europe
• looking at various US opportunities
• Nurture involvement from major

facilities

OTHER IDEAS WELCOME

The project includes (left) growth and characterization, (middle) iterative modeling, and (right) design training and
validation. Single-frame red boxes represent experimental samples and data, while double-framed blue boxes
represent computational products. The shaded region in the middle represents the application of particle swarm
optimization. The general flow can be understood as: (1) growth of samples varied by composition and growth
procedures; (2) experimental structural characterization; (3) iterative model simulation using characterization data;
(4) ANN training to link simulation and growth parameters followed by predictive application of the ANN.

Hearing the Signal through the Static: Realtime Noise Reduction in the
Hunt for Binary Black Holes and other Gravitational Wave Transients

Sydney Chamberlin1, Reed Essick2, Patrick Godwin1, Chad Hanna1, Erik Katsavounidis3, Duncan Meacher1, Madeline Wade4
1The Pennsylvania State University, University Park, PA, 16801

2University of Chicago, Chicago, IL 60637
3Massachusetts Institute of Technology, Cambridge, MA 02139

4Kenyon College, Gambier, OH 43022

Fr
eq

ue
nc

y

Time

GW signal...

Glitch...

0 100 0

 1

 G

lit
ch

 P
ro

ba
bi

lit
y

 Time (s)

￼
0

 1

False Dismissal Probability
10-5 10-4 10-3 10-2 10-1 100

 G
lit

ch
 d

et
ec

tio
n

ef
fic

ie
nc

y

Real-time GW searches are
plagued by “glitches”. E.g.,
GW170817 - a binary neutron
star merger - had a delayed
alert because we had to deal
with data quality issues.

Goal: use machine learning to
classify glitches in real-time in
based on auxiliary information
like seismometers,
magnetometers, etc.

Currently can reject ⅔ of the
glitches with a 1% false
dismissal. Working to make it
even better.

RADICAL-Cybertools: Building Blocks
for Workflow System Middleware

Motivation: Sophisticated and scalable workflows have become essential
for advances in computational science. In spite of the many successes of
workflow systems, there is an absence of a reasoning framework for
end-users to determine which systems to use, when and why. Workflows
are increasingly a manifestation of the algorithmic and methodological
advances; workflow users and workflow system developers are often the
same. Workflow systems must be easily extensible so as to support
diverse functionality and the proverbial “last mile customization”.

We advance the science of workflows and prevent workflow system
“vendor lockin” by formulating a building blocks approach to middleware
for workflow systems grounded on four design principles of
self-sufficiency, interoperability, composability, and extensibility. A
building block has: (i) one or more modules implementing functionalities
to operate on a set of explicitly defined entities; and (ii) two well-defined
and stable interfaces, one for input and one for output.

Properties of building blocks
● Self-sufficiency: design does not depend on the specificity of other

building blocks
● Interoperability: can be used in diverse system architectures without

semantic modifications
● Composability: its interfaces enable communication and coordination

with other building blocks
● Extensibility: its functionalities and entities can be extended to

support new requirements or capabilities

Overview

RADICAL-Cybertools are designed and implemented in accordance with
the building block approach, spanning four functional levels:

(L4) Workflow and Application Description: Requirements and
 semantics of applications and workflows.

(L3) Workload Management System (WLMS): Applications devoid of
semantic context are expressed as workloads.

(L2) Task Runtime System (TRS):
Execution of the tasks of
a workload.

(L1) Resource:
Capabilities, availability and
interfaces required by the
tasks to be executed.

RADICAL-Cybertools are used at each level to support scalable, efficient
and effective use of high-performance and distributed computing.

RADICAL-Cybertools: An implementation of the
Building Block Approach to Middleware

RADICAL-SAGA (Simple API for Grid Applications): Provides an
interoperability layer that lowers the complexity of using distributed
infrastructure whilst enhancing sustainability of distribut- ed
applications, services, and tools in the form of a Python API. By
abstracting away the heterogeneity of the underlying systems,
RADICAL-SAGA simplifies access to many distributed cyberinfrastruc-
tures such as XSEDE and OSG.

(L2-L1) Interface to Resource
ExTASY: Enables sampling of complex macromolecules with molecular
dynam- ics. It supports high-performance and high-throughout
execution of molecular dynamic calculations, and analysis tools that
provide runtime control over a simulation.

HTBAC: Enables the scalable, adaptive and automated calculation of
the binding free energy on high-performance computing resources.

RepEx: Enables performing Replica Exchange simulations at a scale
which is not attainable by stand-alone molecular dynamics
applications. It uses RADICAL-Pilot for workload execution.

ICEBERG: Enables scalable image analysis on high-performance
distributed computing for geoscience research. It provides a library
based on extensible building-blocks that allows the integration of
frameworks and algorithms seamlessly.

(L4) Applications and Scientific Workflows

Ensemble Toolkit: Provides the ability to execute flexible combinations
of ensemble- based applications on high-performance distributed
computing resources. Ensemble Toolkit takes charge of where and how
the workload is distributed: users only have to worry about what to run
and when.

(L3) Workload Management

SeisFlows
● Supports seismic inversion workflows on HPC machines, at scale
● We integrated SeisFlow

○ with RADICAL-SAGA (L1) to execute compute jobs
○ with RADICAL-EnTK (L3) to orchestrate tasks and data staging

Atlas (Panda and Harvester)
● PanDA is a WMS designed to support the distributed execution of

workflows via pilots.
● Harvester is a service which provides pilot and workload

management to Panda
● We integrated Panda and RADICAL-Pilot to improve its scaling on

large HPC resources, and integrated Harvester and RADICAL-Pilot to
provide scalable task execution on HPC machines

Swift
● Swift is a language and a runtime system to execute workflows.
● We integrated Swift with RADICAL-WLMS (L3) to execute workloads

concurrently on HPC and HTC resources.

Fireworks
● Fireworks is a system that enables material science workflows
● We integrate Fireworks and RADICAL-Pilot (L2) to improve its scaling

on HPC resources

Integration with existing systems

RADICAL-Pilot: Scalable pilot system for the simple and versatile
execution of concurrent and distributed many-task applications on
clusters, grids, and clouds. RADICAL-Pilot offers users a lightweight
Python API to handle a variety of workloads—including MPI,
multiprocess, multithreaded, CPU, and GPU tasks—and scheduling
O(10k) tasks while marshalling O(10k) distributed cores.

(L2) Task Runtime Management

Learning	Directed	Acyclic	Graphs	(DAGs)	

•  Generally	NP-hard	
•  Not	scalable	
•  Stringent	assumptions		

Large	Network	Properties	
•  Polynomial	(n3)	Alg.	
•  Scalable	to	large	systems	
•  Relaxed	assumptions	

Large-Scale	Causal	Structure	Learning	
CDS&E:	Statistical	Methods	for	Discrete-Valued	High-Dimensional	Time	Series		

Ali	Shojaie	

Raheem Beyah

SI2-SSE: ShareSafe: A Framework for Researchers and
Data Owners to Help Facilitate Secure Graph Data

Sharing

