Sustaining Distributed Workflow Management Research and Software in Support of Science

Ewa Deelman, Ph.D.

Longstanding collaboration with Miron Livny
LIGO’s Gravitational Wave Detection

LIGO announced first ever detection of gravitational waves Feb 2016

Created as a result of coalescence of a pair of dense, massive black holes

Confirms major prediction of Einstein Theory of Relativity

Detection Event

Detected by both of the operational Advanced LIGO detectors (4km long L shaped interferometers)

Event occurred at September 14, 2015 at 5:51 a.m. Eastern Daylight Time

Images Credits: 0.2 Second before the black holes collide: SXS/LIGO
Signals of Gravitational Waves Detected: Caltech/MIT/LIGO Lab
One of the main pipelines to measure the statistical significance of data needed for discovery

Contains 100’s of thousands of jobs and accesses on order of terabytes of data

Uses data from multiple detectors

For the detection, the pipeline was executed on distributed resources in the US and Europe

Use our Pegasus software to automate the execution of tasks and data access

2015-2016

20,942 Workflows
107,576,294 Tasks
55,915,928 Jobs
9/15-2/16
The Virtual Data Grid (VDG) Model

- Data suppliers publish data to the Grid
- Users request raw or derived data from Grid, without needing to know
 - Where data is located
 - Whether data is stored or computed
- User can easily determine
 - What it will cost to obtain data
 - Quality of derived data
- VDG serves requests efficiently, subject to global and local policy constraints

(LIGO) “Conduct a pulsar search on the data collected from Oct 16 2000 to Jan 1 2001”
- For each requested data value, need to
 - Understand the request
 - Determine if it is instantiated; if so, where; if not, how to compute it
 - Plan data movements and computations required to obtain all results
 - Execute this plan

GrigPhyN Project, Ian Foster (PI), Paul Avery, Carl Kesselman, Miron Livny, (co-Pis)

http://pegasus.isi.edu

www.pegasus.isi.edu

Development Team:
- Ewa Deelman, ISI
- www.griphyn.org

Completion Date
- November 2001
Lessons Learned

• Listen to the scientists needs – virtual data was a great concept, but too abstract

• Need to deal with distributed, heterogeneous data and compute resources

• Need to deal with changing resources/software over time

• Separation between work description and work execution

• Rewarding to work with real world problems

Focus:

• Workflow planning and scheduling (scalability, performance)

• Task execution (scalability, fault tolerance)
Example Pegasus Applications, varied domains, varied users expertise

Inference of Human Demographic History:
Infer human demographic history, such as global migrations, population size changes, and mixing between populations through modeling.

Processing of MRI data for Alzheimer's research

The Structural Protein-Ligand Interactome (SPLINTER) project predicts the interaction of thousands of small molecules with thousands of proteins.

Molecular dynamics simulations for drug delivery

Helioseismology

Astronomy/Montage
Southern California Earthquake Center’s CyberShake PSHA Workflow

Civil engineers ask seismologists: What will the peak ground motion be at my new building in the next 50 years?

Seismologists answer this question using Probabilistic Seismic Hazard Analysis (PSHA)

Workload does not match the infrastructure

293 workflows each workflow has 820,000 tasks
Lessons learned

- Developing capabilities takes time
- Cross-pollination is highly beneficial
- Working with various applications makes software better but also more complex
- Need capable people and sound software engineering practices to make it work
Software Engineering

Small team – easy to communicate!

GitHub and public mailing lists
- Open Source
- Open development with community feedback

Atlassian tools
- Jira: feature/bug/task tracking
- Fisheye: a window into the code changes
- Bamboo: automatic builds and tests
- Confluence: wiki for roadmaps and
- HipChat: quick communication between team members

Test Driven Development
- Builds are run automatically for each code commit
- Unit tests are run as part of each build
- Large functional workflow tests are run every night. Many of the tested workflows are derived from production workflows from our users
Lessons learned: It is important to interleave Research and Development, you are judged by your CS achievements, brings satisfaction.

Publications over the years

Data Integrity

https://pegasus.isi.edu/workflow_gallery/
To sustain software, need many different funding sources and interleave research, software development, and user support

- Pegasus-specific funding

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>New directions: Circuit design: DARPA</td>
<td>XSEDE subcontract</td>
<td>Data integrity: NSF</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Application to bioinformatics: NIH</td>
<td></td>
</tr>
</tbody>
</table>
Lessons Learned Summary

• Developing production quality software targeting cutting edge science applications and heterogeneous cyberinfrastructure:
 • Involves algorithm development
 • Requires an experienced software development and research team (Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira da Silva) and employing good software engineering practices
 • Open source is important
 • Takes time and patience (not all collaborations are easy at times)
 • Needs sustained funding. (diversity is important)

• Need commitment to a vision, collaboration is key

• Collaboration between various CS expertise is critical to research and making software robust: cybersecurity, networking, data management, cloud computing, ..

• Collaboration between CS and domain scientists is critical to making the software relevant
 • Need to work with various applications and communities

• Need to listen carefully to scientists’ needs, takes time to develop trust

• Need to abstract user’s needs to general concepts applicable across domains

• Good to pick a catchy name and logo and stick to it

Pegasus

http://pegasus.isi.edu
We welcome the opportunity to work with new applications and enhance our solutions based on user’s needs.