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   Outline:  
n Some comments on our tools for parallel unstructured mesh 

simulations 
n Generalization of our multicriteria partition improvement 

procedures 
n Applications being worked on 
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Parallel Unstructured Mesh Infrastructure (PUMI) 

   PUMI Services: 
n Mesh and fields distributed 

across processes 
l  Linked to geometry 
l  Communication links  
l  Ownership controls operations 

n Entity migration 

n Read only copies 
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Parallel Curved Mesh Adaptation (MeshAdapt) 

   Fully parallel operating on distributed meshes 
n General local mesh modification 
n Adapts to curved geometry 
n Driven by anisotropic mesh metric field 
n Local on the fly solution transfer 
n Supports curved mesh adaptation 
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Building In-Memory Parallel Workflows

  A scalable workflow requires effective component coupling
n  Avoid file-based information passing

l On massively parallel systems I/O dominates power 
consumption

l Parallel filesystem technologies lag behind performance and 
scalability of processors

l Unlike compute nodes, the file system resources are almost 
always shared and performance can vary significantly

n  Use APIs and data-streams to keep inter-component 
information transfers and control in on-process memory
l When possible, don’t change horses
l Component implementation drives the selection of an in-

memory coupling approach
l Link component libraries into a single executable
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Parallel Unstructured Mesh Infrastructure 

   SCOREC unstructured mesh technologies: 
n PUMI – Parallel Unstructured Mesh Infrastructure 

(scorec.rpi.edu/pumi/) 
n MeshAdapt – parallel mesh adaptation  

(https://www.scorec.rpi.edu/meshadapt/)  
n ParMA (https://www.scorec.rpi.edu/parma/) and it 

generalization into EnGPar (http://scorec.github.io/EnGPar/) 
for multicriteria load balance improvement 

n In-memory integration for parallel adaptive simulations for  
l  Extended MHD with M3D-C1  
l  Electromagnetics with ACE3P  
l  Non-linear solids with Albany/Tirlinos multiphysics 
l  FR fields in Tokamaks with MFEM multiphysics 
l  CFD problems with PHASTA, Proetus, Fun3D, Nektar++ 
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Application Examples 

     

Plastic deformation of 
a mechanical part

Blood flow in the 
arterial system

Fields in a particle accelerator

Application of active flow 
control to aircraft tails Modeling a dam break

Plasma and RF fields 
in Tokamaks

Creep and plastic stresses  
in flip chips



Dynamic Load Balancing for Adaptive Workflows 

   At scale found graph and geometric based methods either 
consume too much memory and fail, or produce low quality 
partitions 

   Original partition improvement work focused on using mesh 
adjacencies directly to account for multiple criteria to  
n  ParMA partition improvement procedures that used diffusive methods 
n  Used in combination with various global geometric and local graph 

methods to quickly improve the partitions 
n  Account for dof on any mesh entity (balance multiple entity types) 
n  Produced better partitions (solved faster) using less time to balance 

   Goal of current EnGPar developments is generalization 
n  Take advantage of big graph advances and new hardware 
n  Broaden the areas of application to new applications (mesh based and 

others)  



Partitioning to 1M Parts 

   Multiple tools needed to maintain partition quality at scale 
n  Local and global topological and geometric methods 
n  ParMA quickly reduces large imbalances  

and improves part shape 
   Partitioning 1.6B element mesh from 128K to  
1M parts (1.5k elms/part) then running ParMA.  
n  Global RIB - 103 sec, ParMA - 20 sec: 

209% vtx imb reduced to 6%, elm imb up   
to 4%, 5.5% reduction in avg vtx per part 

n  Local ParMETIS - 9.0 sec, ParMA - 9.4  
sec results in: 63% vtx imb reduced to  
5%, 12% elm imb reduced to 4%,  
and 2% reduction in avg vtx per part 

   Partitioning 12.9B element mesh from 128K (< 7% imb)  
to 1Mi parts (12k elms/part) then running ParMA. 
n  Local ParMETIS - 60 sec, ParMA - 36 sec results in:  

35% vtx imb to 5%, 11% elm imb to 5%, and 0.6%  
reduction in avg vtx per part 



   Employ an N-graph in the development of EnGPar 
n Capable of reflecting multiple criteria which was the 

ParMA’s advantage for conforming meshes 
n Goal remains to supplement other partitioners to 

efficiently produce a superior partition of the parallel work 
   The N-graph, when considering multiple criteria, is: 
n  A set of vertices V representing atomic units of work. 
n N sets of hyperedges, H0,…,Hn-1, for each  

relation type 
n  N sets of pins, P0,…,Pn-1, for each  

set of hyperedges 
n  Each pin in Pi connects a vertex, v in V,  

to a hyperedge, h in Hi 

EnGPar: Diffusive Graph Partitioning 

An N-graph with 2 relation types 



EnGPar: Diffusive Graph Partitioning 

To provide fast partition refinement 
n Local decisions are made sending weights  

across part boundaries. 
n Weight is sent from heavily loaded parts to  

neighbors with less weight  
n Vertices on the part boundary (A,B,C,D) are  

selected in order to: 
l Reduce the imbalance  

of the target criteria 
l Limit the growth of   

the part boundary  
 



EnGPar: Diffusive Graph Partitioning 

   Order of migration controlled by graph distance calculations 
   Two steps to determine “Distance from Center” 
n  Breadth-first traversal seeded by the edges crossing the part boundary. 

l Determines the edges  
connected to part  
center (in red) 

n  Breadth-first traversal  
seeded by edges at  
the center of the part 
l Calculates distance  

of boundary edges  
from the center 

   Edges at part boundaries operated on to drive migration: 
n  First deal with disconnected and shallow components 
n  Then focus on edges with greater distance from the center 

   This ordering results in removing disconnected components faster and 
creating smaller part boundaries (less communication) 



   EnGPar based on more standard graph operations than ParMA 
n Take advantage of GPU based breath first traversals 

   Continuing developments: 
n  Different algorithms and  

known techniques  
(unrolling loops, smaller  
data sizes) 

n  Different memory layouts  
(CSR, Sell-C-Sigma) Support migration – host communicates, device 
rebuilds (hyper)graph. 

n  Accelerate other diffusive procedures using data parallel kernels. 
n  Focus on pipelined kernel implementations for FPGAs. 

Toward Accelerator Supported Systems 

Timing comparison of OpenCL  
BFS kernels on NVIDIA 1080ti

scg_int_unroll is 5 times faster 
than csr on 28M graph and up 
to 11 times faster than serial 
push on Intel Xeon (not shown).



EnGPar for Conforming Meshes 

   Applications using unstructured meshes exhibit 
several partitioning problems 
n Multiple entity dimensions important 
n Complex communication patterns  

   To achieve the best performance require: 
n Mesh entities holding dofs to be balanced 
n Mesh elements to be balanced 

   N-graph construction includes 
n Elements represented by graph vertices 
n Mesh entities holding dofs represented by 

hyperedges 
n Pins between graph vertex to hyperedge 

where the mesh element is bounded  
by the mesh entity 

Mesh adjacencies (a)  
to N-graph (b)



EnGPar for Conforming FE Meshes 

   Tests run on billion element mesh 
n  Global ParMETIS part k-way to 8Ki 
n  Local ParMETIS part k-way from 8Ki  

to 128Ki, 256Ki, and 512Ki parts 

   Resulting imbalances after running  
EnGPar are in the following figures 

   Accounting for multiple entities  
n  Creating the 512Ki partition from 8Ki 

parts takes 147 seconds with local 
ParMETIS (including migration) 

n  EnGPar reduces a 53% vertex 
imbalance to 13% in 7 seconds on 
512Ki processes. 

   Results close to ParMA what was 
specific to this application  



Mesh-Based Apps Suited to EnGPar (but not ParMA)  

   Overset grids 
n Coupling between meshes 
n More communication/part boundaries 
n The N-graph construction includes: 
l Element for both meshes as vertices 
l Hyperedges for all dof holders 
l Hyperedges for overlap coupling 

   Non-conforming adaptive FV grids 
n Grid vertices as graph vertices 
n Ghost layer related considerations 
n Neighboring edges define edges 

   Unstructured mesh particle in cell for fusion 
n Element define weights 
n Partition must account for field following 
n Particle drift slow – well suited for diffusive  



EnGPar for Conforming FV Meshes 

   FV application (FUN3D) 
n  Vertex partitioning to balance 

multiple entity types 

   N-Graph construction includes: 
n  Graph vertices and mesh vertices 
n  Hyper edges for each element 
n  Pins between elements/vertices 
n  Ghosts vertices receive weights 

   3.6 million element mesh 
n  Partitioned to 1024 w ParMETIS 
n  EnGPar with vertex tolerance of 

5% and edge at 10% 
n  Controlled growth on inter-part 

interfaces 
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Different Application: Discrete Event Simulation 

   CODES simulates running an MPI application  
on a simulated hardware architecture. 

   The main CODES units are logical  
processes (LPs) which represent 
n The hardware components  
n The simulated MPI processes 

 
   The N-graph construction includes: 
n Graph vertices for each LP 
n Graph edges between LPs that  

have an event between them. A dragonfly network



Closing Remarks 

n The RPI SCOREC team has developed a number of 
parallel unstructured mesh tools used by DOE and DoD 

n Tools can contribute to “A National Software Ecosystem” 
n Dynamic load balancing work is an important component 
n Current efforts are focused on:  
l Employing N-graph to meet the needs of multiple applications 
l Effective execution on new generation systems 
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