
 Fast Dynamic Load Balancing for
Extreme Scale Systems

 Cameron W. Smith, Gerrett Diamond, M.S. Shephard
Computation Research Center (SCOREC)

Rensselaer Polytechnic Institute
   Outline:
n Some comments on our tools for parallel unstructured mesh

simulations
n Generalization of our multicriteria partition improvement

procedures
n Applications being worked on

Parallel Data & Services

 Domain Topology

Mesh Topology/Shape

Dynamic Load Balancing

Simulation Fields

Physics and Model Parameters Input Domain Definition with Attributes

Mesh-Based
Analysis

Complete
Domain

Definition

Mesh Generation
and/or Adaptation

Postprocessing
Visualization

Solution
Transfer

Correction
Indicator

PDE’s and 
discretization 
methods

Solution transfer constraints

mesh with fields

mesh  
with fields

 calculated fields

mesh size  
 field

meshes
and
fields

meshing
operation geometric 

 interrogation

Attributed
 topology

non-manifold 
model construction

geometry updates

Mesh size  
field

mesh

 Partition Control

Geometry-Based Adaptive Simulation

Parallel Unstructured Mesh Infrastructure (PUMI)

   PUMI Services:
n Mesh and fields distributed

across processes
l  Linked to geometry
l  Communication links
l  Ownership controls operations

n Entity migration

n Read only copies

2 layers of read only copies

Geometric model Partition model Distributed mesh

mesh region

mesh face

mesh edge

mesh vertex

region

region or face

region, face or
edge

region, face,
edge, or vertex

GEOMETRIC DOMAIN
ENTITIES

MESH
ADJACENCIES

Entity
migration

Communication links

Parallel Curved Mesh Adaptation (MeshAdapt)

   Fully parallel operating on distributed meshes
n General local mesh modification
n Adapts to curved geometry
n Driven by anisotropic mesh metric field
n Local on the fly solution transfer
n Supports curved mesh adaptation

Curved edge collapse

Curved
edge swap

Building In-Memory Parallel Workflows

  A scalable workflow requires effective component coupling
n  Avoid file-based information passing

l On massively parallel systems I/O dominates power
consumption

l Parallel filesystem technologies lag behind performance and
scalability of processors

l Unlike compute nodes, the file system resources are almost
always shared and performance can vary significantly

n  Use APIs and data-streams to keep inter-component
information transfers and control in on-process memory
l When possible, don’t change horses
l Component implementation drives the selection of an in-

memory coupling approach
l Link component libraries into a single executable

5

Parallel Unstructured Mesh Infrastructure

   SCOREC unstructured mesh technologies:
n PUMI – Parallel Unstructured Mesh Infrastructure

(scorec.rpi.edu/pumi/)
n MeshAdapt – parallel mesh adaptation

(https://www.scorec.rpi.edu/meshadapt/)
n ParMA (https://www.scorec.rpi.edu/parma/) and it

generalization into EnGPar (http://scorec.github.io/EnGPar/)
for multicriteria load balance improvement

n In-memory integration for parallel adaptive simulations for
l  Extended MHD with M3D-C1
l  Electromagnetics with ACE3P
l  Non-linear solids with Albany/Tirlinos multiphysics
l  FR fields in Tokamaks with MFEM multiphysics
l  CFD problems with PHASTA, Proetus, Fun3D, Nektar++

6

Application Examples

  

Plastic deformation of
a mechanical part

Blood flow in the
arterial system

Fields in a particle accelerator

Application of active flow
control to aircraft tails Modeling a dam break

Plasma and RF fields 
in Tokamaks

Creep and plastic stresses
in flip chips

Dynamic Load Balancing for Adaptive Workflows

   At scale found graph and geometric based methods either
consume too much memory and fail, or produce low quality
partitions

   Original partition improvement work focused on using mesh
adjacencies directly to account for multiple criteria to
n  ParMA partition improvement procedures that used diffusive methods
n  Used in combination with various global geometric and local graph

methods to quickly improve the partitions
n  Account for dof on any mesh entity (balance multiple entity types)
n  Produced better partitions (solved faster) using less time to balance

   Goal of current EnGPar developments is generalization
n  Take advantage of big graph advances and new hardware
n  Broaden the areas of application to new applications (mesh based and

others)

Partitioning to 1M Parts

   Multiple tools needed to maintain partition quality at scale
n  Local and global topological and geometric methods
n  ParMA quickly reduces large imbalances

and improves part shape
   Partitioning 1.6B element mesh from 128K to
1M parts (1.5k elms/part) then running ParMA.
n  Global RIB - 103 sec, ParMA - 20 sec:

209% vtx imb reduced to 6%, elm imb up
to 4%, 5.5% reduction in avg vtx per part

n  Local ParMETIS - 9.0 sec, ParMA - 9.4
sec results in: 63% vtx imb reduced to
5%, 12% elm imb reduced to 4%,
and 2% reduction in avg vtx per part

   Partitioning 12.9B element mesh from 128K (< 7% imb)
to 1Mi parts (12k elms/part) then running ParMA.
n  Local ParMETIS - 60 sec, ParMA - 36 sec results in:

35% vtx imb to 5%, 11% elm imb to 5%, and 0.6%
reduction in avg vtx per part

   Employ an N-graph in the development of EnGPar
n Capable of reflecting multiple criteria which was the

ParMA’s advantage for conforming meshes
n Goal remains to supplement other partitioners to

efficiently produce a superior partition of the parallel work
   The N-graph, when considering multiple criteria, is:
n  A set of vertices V representing atomic units of work.
n N sets of hyperedges, H0,…,Hn-1, for each

relation type
n  N sets of pins, P0,…,Pn-1, for each

set of hyperedges
n  Each pin in Pi connects a vertex, v in V,

to a hyperedge, h in Hi

EnGPar: Diffusive Graph Partitioning

An N-graph with 2 relation types

EnGPar: Diffusive Graph Partitioning

To provide fast partition refinement
n Local decisions are made sending weights

across part boundaries.
n Weight is sent from heavily loaded parts to

neighbors with less weight
n Vertices on the part boundary (A,B,C,D) are

selected in order to:
l Reduce the imbalance

of the target criteria
l Limit the growth of

the part boundary

EnGPar: Diffusive Graph Partitioning

   Order of migration controlled by graph distance calculations
   Two steps to determine “Distance from Center”
n  Breadth-first traversal seeded by the edges crossing the part boundary.

l Determines the edges
connected to part
center (in red)

n  Breadth-first traversal
seeded by edges at
the center of the part
l Calculates distance

of boundary edges
from the center

   Edges at part boundaries operated on to drive migration:
n  First deal with disconnected and shallow components
n  Then focus on edges with greater distance from the center

   This ordering results in removing disconnected components faster and
creating smaller part boundaries (less communication)

   EnGPar based on more standard graph operations than ParMA
n Take advantage of GPU based breath first traversals

   Continuing developments:
n  Different algorithms and

known techniques
(unrolling loops, smaller
data sizes)

n  Different memory layouts
(CSR, Sell-C-Sigma) Support migration – host communicates, device
rebuilds (hyper)graph.

n  Accelerate other diffusive procedures using data parallel kernels.
n  Focus on pipelined kernel implementations for FPGAs.

Toward Accelerator Supported Systems

Timing comparison of OpenCL  
BFS kernels on NVIDIA 1080ti

scg_int_unroll is 5 times faster
than csr on 28M graph and up
to 11 times faster than serial
push on Intel Xeon (not shown).

EnGPar for Conforming Meshes

   Applications using unstructured meshes exhibit
several partitioning problems
n Multiple entity dimensions important
n Complex communication patterns

   To achieve the best performance require:
n Mesh entities holding dofs to be balanced
n Mesh elements to be balanced

   N-graph construction includes
n Elements represented by graph vertices
n Mesh entities holding dofs represented by

hyperedges
n Pins between graph vertex to hyperedge

where the mesh element is bounded
by the mesh entity

Mesh adjacencies (a)  
to N-graph (b)

EnGPar for Conforming FE Meshes

   Tests run on billion element mesh
n  Global ParMETIS part k-way to 8Ki
n  Local ParMETIS part k-way from 8Ki

to 128Ki, 256Ki, and 512Ki parts

   Resulting imbalances after running
EnGPar are in the following figures

   Accounting for multiple entities
n  Creating the 512Ki partition from 8Ki

parts takes 147 seconds with local
ParMETIS (including migration)

n  EnGPar reduces a 53% vertex
imbalance to 13% in 7 seconds on
512Ki processes.

   Results close to ParMA what was
specific to this application

Mesh-Based Apps Suited to EnGPar (but not ParMA)

   Overset grids
n Coupling between meshes
n More communication/part boundaries
n The N-graph construction includes:
l Element for both meshes as vertices
l Hyperedges for all dof holders
l Hyperedges for overlap coupling

   Non-conforming adaptive FV grids
n Grid vertices as graph vertices
n Ghost layer related considerations
n Neighboring edges define edges

   Unstructured mesh particle in cell for fusion
n Element define weights
n Partition must account for field following
n Particle drift slow – well suited for diffusive

EnGPar for Conforming FV Meshes

   FV application (FUN3D)
n  Vertex partitioning to balance

multiple entity types

   N-Graph construction includes:
n  Graph vertices and mesh vertices
n  Hyper edges for each element
n  Pins between elements/vertices
n  Ghosts vertices receive weights

   3.6 million element mesh
n  Partitioned to 1024 w ParMETIS
n  EnGPar with vertex tolerance of

5% and edge at 10%
n  Controlled growth on inter-part

interfaces

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

128 256 512 1024

Im
b

a
la

n
ce

Processes

EnGPar vtximb
EnGPar edgeimb
ParMETIS vtximb

ParMETIS edgeimb

Different Application: Discrete Event Simulation

   CODES simulates running an MPI application
on a simulated hardware architecture.

   The main CODES units are logical
processes (LPs) which represent
n The hardware components
n The simulated MPI processes

   The N-graph construction includes:
n Graph vertices for each LP
n Graph edges between LPs that

have an event between them. A dragonfly network

Closing Remarks

n The RPI SCOREC team has developed a number of
parallel unstructured mesh tools used by DOE and DoD

n Tools can contribute to “A National Software Ecosystem”
n Dynamic load balancing work is an important component
n Current efforts are focused on:
l Employing N-graph to meet the needs of multiple applications
l Effective execution on new generation systems

   Acknowledgements
n National Science Foundation Grant ACI 1533581
n DOE FastMath SciDAC Institute
n CEED ECP Co-Design Center
n DoD PETTT program

